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Lifted Neural Networks
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Abstract

We describe a novel family of models of multi-
layer feedforward neural networks in which the
activation functions are encoded via penalties in
the training problem. Our approach is based on
representing a non-decreasing activation function
as the argmin of an appropriate convex optimiza-
tion problem. The new framework allows for algo-
rithms such as block-coordinate descent methods
to be applied, in which each step is composed of
a simple (no hidden layer) supervised learning
problem that is parallelizable across data points
and/or layers. Experiments indicate that the pro-
posed models provide excellent initial guesses for
weights for standard neural networks. In addi-
tion, the model provides avenues for interesting
extensions, such as robustness against noisy in-
puts and optimizing over parameters in activation
functions.

1. Introduction

Given current advances in computing power, dataset sizes
and the availability of specialized hardware/ software pack-
ages, the popularity of neural networks continue to grow.
The model has become standard in a large number of tasks,
such as image recognition, image captioning and machine
translation. Current state of the art is to train this model by
variations of stochastic gradient descent (SGD), although
these methods have several caveats. Most problems with
SGD are discussed in (Taylor et al., 2016).

Optimization methods for neural networks has been an ac-
tive research topic in the last decade. Specialized gradient-
based algorithms such as Adam and ADAGRAD (Kingma &
Ba, 2015; Duchi et al., 2011) are often used but were shown
to generalize less than their non adaptive counterparts by
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(Wilson et al., 2017). Our work is related to two main
currents of research aimed at improving neural network op-
timization: using non gradient-based approaches and initial-
izing weights to accelerate convergence of gradient-based
algorithms. To our knowledge this paper is the first to com-
bine the two. In addition our novel formalism allow for
interesting extensions towards handling constraints, robust-
ness, optimizing network topology, etc.

(Taylor et al., 2016) and (Carreira-Perpinan & Wang, 2014)
propose an approach similar to ours, adding variables in the
training problem and using an [?-norm penalization of equal-
ity constraints. They both break down the network training
problem into easier sub-problems and use alternate mini-
mization; however they do not exploit structure in the activa-
tion functions. For Convolutional Neural Networks (CNN),
(Berrada et al., 2016) model the network training problem as
a difference of convex functions optimization, where each
subproblem is a Support Vector Machine (SVM).

On the initialization side, (LeCun et al., 1998; Glorot &
Bengio, 2010) recommend sampling from a well-chosen
uniform distribution to initialize weights and biases while
others either use random initialization or weights learned
in other networks (transfer learning) on different tasks.
(Sutskever et al., 2013) indicate that initialization is crucial
during training and that poorly initialized networks cannot
be trained with momentum. Other methods to initialize neu-
ral networks have been proposed, such as using competitive
learning (Maclin & Shavlik, 1995) and principal component
analysis (PCA) (Seuret et al., 2017). Although PCA pro-
duces state of the art results, it is limited to auto-encoders
while our framework allows for more general learning prob-
lems. Similarly, the competitive learning approach is limited
to the classification problem and works only for one layer
networks while our model can easily be adapted to a broader
range of network architectures. Our approach focuses on
transforming the non-smooth optimization problem encoun-
tered when fitting neural network models into a smooth
problem in an enlarged space; this ties to a well developed
branch of optimization literature (see e.g. section 5.2 of
(Bubeck, 2015) and references therein). Our approach can
also be seen as a generalization of the parameterized recti-
fied linear unit (PReLU) proposed by (He et al., 2015). Our
work can be compared to the standard practice of initializing
Gaussian Mixture Models using K-Means clustering; our
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model uses a simpler but similar algorithm for initialization.

Paper outline. In Section 2, we begin by describing the
mathematical setting of neural networks and our proposed
optimization problem to train the model. Section 3 provides
an example illustrating the basic idea. Section 4 outlines
how to encode activation functions as argmins of convex or
bi-convex optimization problems. Section 5 then expands
the approach of Section 3 to cover a number of useful acti-
vation functions, as well as classification tasks. Section 6
describes a block-coordinate descent method to solve the
training problem. Section 7 describes numerical experi-
ments that support a finding that the models can be used as
a fast weight initialization scheme.

2. Background and Notation

Feedforward neural networks. We begin by establish-
ing notation. We are given an input data matrix X =
[z1,...,Zm] € R™™ and response matrix ¥ € RP*™ and
consider a supervised problem involving a neural network
having L > 1 hidden layers. At test time, the network pro-
cesses an input vector x € R™ to produce a predicted value
§(x) € RP according to the prediction rule g(z) = xp41
where x1 . is defined via the recursion

i1 = o (Wi + bl), l=0,...,L, (D

with initial value zg =z € R® and x; € RP', [ =0,..., L.
Here, ¢;, 1l =1, ..., L are given activation functions, acting
on a vector; the matrices W; € RPi+1 %Pt and vectors b; €
RPi+1 [ = 0,...,L are parameters of the network. In
our setup, the sizes (p;) lL;Ol are given with pg = n (the
dimension of the input) and py41 = p (the dimension of the
output).

We can express the predicted outputs for a given set of m
data points contained in the n X m matrix X as the p x m
matrix Y (X) = X 41, as defined by the matrix recursion

X = o(WiXy +b1"), 1=0,...,L, ()

with initial value Xo = X and X; € RP**™ [ =0,..., L.
Here, 1 stands for the vector of ones in R™, and we use the
convention that the activation functions act column-wise on
a matrix input.

In a standard neural network, the matrix parameters of the
network are fitted via an optimization problem, typically of
the form

L

i LY, X + %%
(th?)lér:l(xl)f ( L+1) Zpﬂrl( l)

st. X1 =o(W X, + bllﬁ)y
Xo=X

=0 3)
1=0,....L

where L is a loss function, p € Ri“ is a hyper-parameter
vector, and 7r;’s are penalty functions which can be used to

encode convex constraints, network structure, etc. We refer
to the collections (W, ;)% and (X;)E | as the (W,b)-
and X -variables, respectively.

To solve the training problem (3), the X -variables are usu-
ally eliminated via the recursion (2), and the resulting objec-
tive function of the (W, b)-variables is minimized without
constraints, via stochastic gradients. While this appears to
be a natural approach, it does make the objective function
of the problem very complicated and difficult to minimize.

Lifted models. In this paper, we develop a family of mod-
els where the X -variables are kept, and the recursion con-
straints (1) are approximated instead, via penalties. We
refer to these models as “lifted” because we lift the search
space of (W, b)-variables to a higher-dimensional space of
(W, b, X)-variables. The training problem is cast in the form
of a matrix factorization problem with constraints on the
variables encoding network structure and activation func-
tions.

Lifted models have many more variables but a much more
explicit structure than the original, allowing for training
algorithms that can use efficient standard machine learning
libraries in key steps. The block-coordinate descent algo-
rithm described here involves steps that are parallelizable
across either data points and/or layers; each step is a simple
structured convex problem.

The family of alternate models proposed here have the po-
tential to become competitive in their own right in learning
tasks, both in terms of speed and performance. In addi-
tion, such models are versatile enough to tackle problems
deemed difficult in a standard setting, including robustness
to noisy inputs, adaptation of activation functions to data, or
including constraints on the weight matrices. Our prelim-
inary experiments are limited to the case where the lifted
model’s variables are used as initialization of traditional
feedforward network. However, we discuss and layout the
framework for how these models can be used to tackle other
issues concerning traditional networks such as robustness
and optimizing how to choose activation functions at each
layer.

3. Basic Idea

To describe the basic idea, we consider a specific example,
in which all the activation functions are the ReL.Us, except
for the last layer. There ¢y, is the identity for regression
tasks or a softmax for classification tasks. In addition, we
assume in this section that the penalty functions are of the
form m (W) = |W|%,1=0,...,L.

We observe that the ReLU map, acting componentwise on
a vector input u, can be represented as the “argmin” of an
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optimization problem involving a jointly convex function:

¢(u) = max(0,u) = arg Ivn>161 [lv — ull2- 4)

As seen later, many activation functions can be represented
as the “arg min” of an optimization problem, involving a
jointly convex or bi-convex function.

Extending the above to a matrix case yields that the condi-
tion X; 1 = ¢p(W;X; + b;17) for given [ can be expressed
via an “arg min”:

X;41 € argmin || Z — W X; — 17 |2,
Z>0
This representation suggests a heuristic to solve (3), replac-

ing the training problem by

L
LY, WXy +b17)+ > prWil3
=0

min
(Wi,b1),(X1)
L1
+)° (Mgl X — WX, — b 17|I7)
1=0
st. X320, l=1,....,.L—-1, Xo=2X.

)
where \;11 > 0 are hyperparameters, p; are regularization
parameters as in (3) and £ is a loss describing the learning
task. In the above model, the activation function is not used
in a pre-defined manner; rather, it is adapted to data, via the
non-negativity constraints on the “state” matrices (X l)ljjll.
We refer to the above as a “lifted neural network™ problem.

Thanks to re-scaling the variables with X; — /A X,
Wi = \/Ai41/ MW, and modifying p;’s accordingly, we
can always assume that all entries in A are equal, which
means that our model introduces just one extra scalar hyper-
parameter over the standard network (3).

The above optimization problem is, of course, challenging,
mainly due to the number of variables. However, for that
price we gain a lot of insight on the training problem. In
particular, the new model has the following useful charac-
teristics:

e For fixed (W, b)-variables, the problem is convex in
the X-variables X;, [ = 1,..., L; more precisely it
is a (matrix) non-negative least-squares problem. The
problem is fully parallelizable across the data points.

e Likewise, for fixed X -variables, the problem is convex
in the (W, b)-variables and parallelizable across layers
and data points. In fact, the (W, b)-step is a set of
parallel (matrix) ridge regression problems.

These characteristics allow for efficient block-coordinate
descent methods to be applied to our learning problem. Each
step reduces to a basic supervised learning problem, such as

ridge regression or non-negative least-squares. We describe
one algorithm in more detail in section 6.

The reader may wonder at this point what is the prediction
rule associated with our model. For now, we focus on ex-
tending the approach to broader classes of activations and
loss functions used in the last layer; we return to the predic-
tion rule issue in our more general setting in section 5.2.

4. Activations as arg min Maps

In this section, we outline theory on how to convert a class
of functions as the “arg min” of a certain optimization prob-
lem, which we then encode as a penalty in the training
problem. We make the following assumption on a generic
activation function ¢.

BCR Condition. The activation func-
tion ¢ : R¥ — RJ satisfies the bi-
convex representation (BCR) condition
if it can be represented as follows:

Vo € R*) ¢(x) = arg ireuﬂg Dy(z, z),

where D, : RF x R — R is a bi-
convex function (convex in z for fixed
z and vice-versa), which is referred to
as a BC-divergence associated with the
activation function.

We next examine a few examples, all based on divergences
of the form
Dy(x,2) = ®(2) — 272,

where @ is a convex function. This form implies that, when
& is differentiable, ¢ is the gradient map of a convex func-
tion; thus, it is monotone.

Strictly monotone activation functions. We assume that
¢ is strictly monotone, say without loss of generality, strictly
increasing. Then, it is invertible, and there exists a func-
tion, denoted ¢ 1, such that the condition z = ¢~!(2) for
z € range(¢) implies 2 = ¢(z). Note that ¢! is strictly
increasing on its domain, which is range(¢).

Define the function ® : R — R, with values
D(z) = / ¢~ (u) du if z € range(¢), (6)
0

and +oo otherwise.

The function ® is convex, since ¢! is increasing. We then
consider the problem
min{ ®(z) —xz : z € range(¢)}. 7

Note that the value of the problem is nothing else than
®*(x), where ®* is the Fenchel conjugate of .
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By construction, the problem (7) is convex. At optimum,
we have © = ¢~ 1(z), hence z = ¢(x). We have obtained

¢(z) = arg mzin ®(z) —xz : z € range(d).

Examples. As an example, consider the sigmoid function:
1
o) = e

with inverse

¢~ 1(z) = log 1%2, 0<z<1,
and +o0 otherwise.
Via the representation result (6), we obtain

o(x) = arg min zlogz + (1 —2)log(l — z) — zz

Next consider the “leaky ReL.U” function

ar ifx <0,

‘b(‘”)_{ r  ifx >0,

where 0 < a < 1. We have
1,6 | Q/a)z ifz<0,
¢ (Z)_{z if 2 > 0,
with domain the full real line; thus

B(z) = / T 67 (w) du
1

1
= 5 max < max(0, —2)2, max (0, z)2> (8)
a
As another example, consider the case with ¢(z) =
arctanh(z). The inverse function is

1 14z

—1 _ =+
¢ (2)7210g1—z’

T A<
For any z € [—1, 1], ®(z) takes the form

o(2)

1 z
5/0 (log(1 4+ u) —log(1 —u)) du

= % (1 —2)log(1 —2)+ (14 2)log(1 + 2)) + cst.

Sometimes there are no closed-form expressions. For exam-
ple, for the so-called “softplus” function ¢(x) = log(1+e€%),
the function ® cannot be expressed in closed form:

O(z) = / log(e* — 1) du, dom® =R,.
0
This lack of a closed-form expression does not preclude al-

gorithms from work with these types of activation functions.
The same is true of the sigmoid function.

Non-strictly monotone examples: ReLLU and piece-wise
sigmoid. The above expression (7) works in the ReLLU
case; we simply restrict the inverse function to the domain
R ; specifically, we define

“1,~_ ) oo ifz <0,
¢ (Z)_{z if 2 >0,

We then have dom® = R, and for z > 0:

z 1
D(z) = / wdu = =22
0 2
‘We have obtained

o(x) = arg rznzlgl O(z) — zz.

The result is consistent with the “leaky” ReLU case in the
limit when o« — 0. Indeed, in that case with ® given as in
(8), we observe that when o — 0 the domain of ® collapses
from the whole real line to R, and the result follows.

In a similar vein, consider the “piecewise” sigmoid function,
¢(x) = min(1, max(—1,)),
This function can be represented as

¢(x) = argmin 2% — 2zz : |2| < 1.

Finally the sign function is represented as

sign(z) = argmin —zx : |z| < 1.
Non-monotone examples. The approach can be some-
times extended to non-monotonic activation functions. As
an example, the activation function ¢(x) = sin = has been
proposed in the context of time-series. Here, we will work
with

z
d(z) = / arcsin(u) du = zarcsin z + /1 — 22 + cst.,
0

with domain [—1, 1]. The function is convex, and we can
check that

= 1 @ -
o(x) argz;n\lzl\%1 () —zz

Jointly convex representations. Some activation func-
tions enjoy a stronger condition, which in turn leads to
improved properties of the corresponding lifted model.

JCR Condition. The activation function ¢ :
R*¥ — RJ satisfies the jointly convex represen-
tation (JCR) condition if it satisfies the CR condi-
tion with a jointly convex function Dy (z, z).
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Note that, for the JCR condition to hold, the activation
function needs to be monotone. Because of non-uniqueness,
we may add a term that is not a function of the variable
being optimized (i.e. in the condition above, an arbitrary
function of u) to the JC-divergence in order to improve the
overall structure of the problem. This is highlighted below
and discussed in Section 6.

The JCR condition applies to several important activation
functions, beyond the ReL.U, for which

_ . | lz—=|3 ifz>0,
max(x,0) = arglrlzlnD¢(m,z) = { oo
Note that the JC-divergence for the ReLU is not unique; for
example, we can replace the [o-norm by the /;-norm.

The “leaky” ReLU with parameter « € (0, 1), defined by
¢(x) = max(x/«, ), can be written in a similar way:

max(r/a,r) = argmin ||z — 2|3 : z > (1/a)x.

The piece-wise sigmoid, as defined below, has a similar
variational representation: with 1 the vector of ones,

min(1, max(0,z)) = argmin [lz — 2|3 : 0< 2z < 1.
z

In order to address multi-class classification problems, it is
useful to consider a last layer with an activation function
that produces a probability distribution output. To this end,
we may consider an activation function which projects, with
respect to some metric, a vector onto the probability simplex.
The simplest example is the Euclidean projection of a real
vector u € R” onto the probability simplex in R¥:

$(z) = argmin ||z — 2|2 : 2>0, z71=1.
z

Max-pooling operators are often used in the context of im-
age classification. A simple example of a max-pooling
operator involves a p-vector input x with two blocks, x =
(M, ), with 2(i) € RP, i = 1,2, with p = p; + po.
We define ¢ : RP — R2 by

_ (1) @) - w2
P(z) = (énz%l T, max )R (9)

Max-pooling operators can also be expressed in terms of a
jointly convex divergence. In the above case, we have

#(z) = argmin 172 +17(z — D2) 4,
where D is an appropriate block-diagonal matrix of size

p X 2 that encodes the specifics of the max-pooling, namely
in our case D = diag(1,,,1,,).

otherwise.

Extension to matrix inputs. Equipped with a divergence
function that works on vector inputs, we can readily extend
it to matrix inputs with the convention that the divergence
is summed across columns (data points). Specifically, if
X =[z1,...,7m] € RFX™ we define p by Z = ¢(X) =
[21,. ..y 2m] € RM>m ag acting column-wise. We have

O(X) = [p(x1), ..., d(xm)] = arngin Dy(X, Z),

where, with some minor abuse of notation, we define a
matrix version of the divergence, as follows:

Dy([x1, - Ty [21, - -+ 2m]) = Zm(xi,zi).

5. Lifted Framework

5.1. Lifted neural networks

Assume that the BCR or JCR condition is satisfied for each
layer of our network and use the short-hand notation D; =
Dy, for the corresponding divergences. Condition (2) is
then written as

X1 € arg)rpeir}( DX, W, X, +b17), 1=0,...,L.

The lifted model consists in replacing the constraints (2)
with penalties in the training problem. Specifically, the
lifted network training problem takes the form

L
min LY, WX, +b:.10) + Y m (W, 10
ooy W Xe +beT) ; (W) a0
L-1
+ ) N DUWiXy + 1", X )
1=0
st. Xo=X, X;>20,l=1,...,L—1
with A\1,...,Ap41 given positive hyper-parameters. As

with the model introduced in section 3, the lifted model
enjoys the same parallel and convex structure outlined ear-
lier. In particular, it is convex in X-variables for fixed
W -variables. If we use a weaker bi-convex representation
(using a bi-convex divergence instead of a jointly convex
one), then convexity with respect to X-variables is lost.
However, the model is still convex in X; for a given [ when
all the other variables are fixed; this still allows for block-
coordinate descent algorithms to be used.

As a specific example, consider a multi-class classification
problem where all the layers involve ReL.Us except for
the last. The last layer aims at producing a probability
distribution to be compared against training labels via a
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cross entropy loss function. The training problem writes

L
min = — TrY T logs(Wr X, +b;17) + W1
G nin g s( ) ;p W13
L—1
+ ) N[ Xopn = WX — bl "3
=0
st. Xo=X, X;>0, I=1,...,L—1
(11)

where the equality constraint on Xy ; enforces that its
columns are probability distributions. Here, s(-) : R™ —
R™ is the softmax function. We can always rescale the
variables so that in fact the number of additional hyper-
parameters A\;, [ = 1,..., L — 1, is reduced to just one.

5.2. Lifted prediction rule

In our model, the prediction rule will be different from that
of a standard neural network, but it is based on the same
principle. In a standard network, the prediction rule can be
obtained by solving the problem

:l)(l') = myin ‘C(y7mL+1) : (Q)a Zo = T,

where the weights are now fixed, and y € RP? is a variable.
Of course, provided the loss is zero whenever its two argu-
ments coincide, the above trivially reduces to the standard
prediction rule: §(x) = x1,11, where x1,11 is obtained via
the recursion (2).

In a lifted framework, we use the same principle: solve the
training problem (in our case, (10)), using the test point as
input, fixing the weights, and letting the predicted output
values be variables. In other words, the prediction rule for a
given test point x in lifted networks is based on solving the
problem

9 = arg min L(y, Wray + br)

y,(z1)

L—1
+ > N Du(Way + by, @i41)

1=0
S.t. xg = . (12)

The above prediction rule is a simple convex problem in the
variables y and z;, [ = 1,..., L. In our experiments, we
have found that applying the standard feedforward rule of
traditional networks is often enough.

6. Block-Coordinate Descent Algorithm

In this section, we outline a block-coordinate descent ap-
proach to solve the training problem (10).

6.1. Updating (W, b)-variables

For fixed X-variables, the problem of updating the W-
variables, i.e. the weighting matrices (W, b)), is par-
allelizable across both data points and layers. The sub-
problem involving updating the weights at a given layer
1=0,...,L takes the form

(W', b)) = arg Hvlvlil N1 Di(W X461 X 1) +m(W).

The above is a convex problem, which can be solved via
standard machine learning libraries. Since the divergences
are sums across columns (data points), the above problem
is indeed parallelizable across data points.

For example, when the activation function at layer [ is a
ReLU, and the penalty 7; is a squared Frobenius norm, the
above problem reads

(W7, bi7) = acgmin Ay | W X0t017 = X [ [V

which is a standard (matrix) ridge regression problem. Mod-
ern sketching techniques for high-dimensional least-squares
can be employed, see for example (Woodruff et al., 2014;
Pilanci & Wainwright, 2016).

6.2. Updating X -variables

In this step we minimize over the matrices (X;)f!. The
sub-problem reads exactly as (10), with now the (W, b)-
variables fixed. By construction of divergences, the problem
is decomposable across data points. When JCR conditions
hold, the joint convexity of each JC-divergence function
allows us update all the X-variables at once, by solving
a convex problem. Otherwise, the update must be done
cyclically over each layer, in a block-coordinate fashion.

Forl = 1,..., L, the sub-problem involving X;, with all
the other X-variables X}, j # [ fixed, takes the form

X" = arg min N1t DIWZ + 51T X 01)

+NDi-1(Z, X7 4) (13)

where X} | := W;_1X;_1 + b_117". By construction, the
above is a convex problem, and is again parallelizable across
data points.

Let us detail this approach in the case when the layers [, [ +
1 are both activated by ReLUs. The sub-problem above
becomes

X = arngn>iré N1 Xip1 = W Z — 017 || 3+
MNINZ =W Xy — b 173

The above is a (matrix) non-negative least-squares, for
which many modern methods are available, see (Kim et al.,
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2007; 2014) and references therein. As before, the problem
above is fully parallelizable across data points (columns),
where each data point gives rise to a standard (vector) non-
linear least-squares. Note that the cost of updating all
columns can be reduced by taking into account that all
column’s updates share the same coefficient matrix W;.

The case of updating the last matrix X is different, as it
involves the output and the loss function £. The update rule
for X1, is indeed

Xf, = arg min LY, Z)+ Ao 1D(X2,2), (14)
where X9 := W, X, + b;,17. Again the above is paral-
lelizable across data points.

In the case when the loss function L is a squared Frobenius
norm, and with a ReLU activation, the update rule (14) takes
the form

Xy =argmin 12 - VI3 +ALlZ - X93,

which can be solved analytically:

1 AL+1 o
, n X0,
1+ Mg 1+ Ap1 L

In the case when the loss function is cross-entropy, and
the last layer generates a probability distribution via the
probability simplex projection, the above takes the form

XZFH = max (O

Xp41 = argmin — TrYTlog Z 4+ Apy1|1Z — X212
Z>0, Z"1=1 (15)

where we use the notation log in a component-wise fash-
ion. The above can be solved as a set of parallel bisection
problems. See Appendix A.

7. Numerical Experiments

Although lifted models in their own right can be used for
supervised learning tasks, their main success so far has been
using them to initialize traditional networks. In this section,
we examine this and see if the lifted models can generate
good initial guesses for standard networks.

7.1. MNIST

The model described in this paper was compared against a
traditional neural network with equivalent architectures on
the MNIST dataset (LeCun & Cortes, 2010). For the classi-
fication problem, the dataset was split into 60,000 training
samples and 10,000 test samples with a softmax cross en-
tropy loss. This is a similar model to the one specified in (5),
with the only difference that the last layer loss is changed
from an /5 loss to a softmax cross entropy loss as seen in

(11). In addition to comparing the models, the weights and
biases learned in the augmented neural network were used
as initialization parameters for training a standard neural
net of the same architecture to compare their performance,
both in classification and convergence during training. For
all models, ReLLU activations were used. /5 regularization
was used for all layers and the regularization parameters
p = 1072 were held constant throughout all training proce-
dures. The X parameters for the lifted model were selected
using Bayesian Optimization. The lifted model was trained
using the block-coordinate descent scheme outlined in Sec-
tion 6. The standard feedforward networks were trained in
Tensorflow using a constant learning rate; reasons for this
are highlighted in (Wilson et al., 2017). Table 1 summarizes
the accuracy rates for the different architectures for 2 differ-
ent learning rates. Figure 1 illustrates the test set accuracy
versus number of epochs for two different architectures.

10
e
0.8
0.7
0.6
05
0.4
03
02
0.1
0.0

Test Accuracy

Lifted
Normal
Xavier

o2-scaling

2 4 6 8 10 12 14 16

10
0.9 ffﬁ’\rw
0.8
0.7
0.6
0.5
0.4
03
02
0.1
0.0

Lifted
Normal

Test Accuracy

Xavier

o2-scaling

2 4 6 8 10 12 14 16

Epochs

Figure 1. Plot of test accuracy vs number of training epochs on
a held-out validation set during training for two different archi-
tectures. The shaded area on the plots indicated uncertainty to 2
standard deviations across 5 different experiments. The batch size
was fixed at 100 and the learning rate was = le—>5. Top: One
layer neural network with 300 hidden units and ReL.U activation.
Bottom: Neural network composed of 3 ReLLU layers with 500,
200, and 100 hidden units respectively.



Lifted Neural

Networks

Learning rate

n =1le—5

Architecture Our Model NN[Normal] NN[Xavier] NN [o-scale] NN [Lifted]
300 0.898 £0.005 0.915+£0.004 0.9230 +0.005 0.924 +£0.003 0.962 + 0.003
300 — 100 0.875£0.005 0.919+0.003 0.932 +0.003 0.931 £0.003 0.969 + 0.004
500 — 150 0.865 £ 0.005 0.927 £0.003 0.936 £ 0.004 0.935+£0.005 0.970 £ 0.005
500 — 200 — 100 0.853 £0.003 0.927 £0.001 0.939 £ 0.005 0.935+0.003 0.958 +0.008
400 — 200 — 100 — 50 0.770 +£0.015 0.919 +0.005 0.938 £0.003 0.936 +0.006 0.919 4+ 0.030
Learning rate n =1le—6

Architecture Our Model NN[Normal] NN[Xavier] NN [o?-scale] NN [Lifted]

300 0.898 £ 0.005 0.800+£0.011 0.836 +£0.008 0.844 +£0.011 0.875 4+ 0.022
300 — 100 0.875+£0.005 0.792+0.013 0.838 £0.007 0.842+0.009 0.899 4+ 0.021
500 — 150 0.865 £+ 0.005 0.824 +£0.007 0.850+0.004 0.858 £0.002 0.890+ 0.018
500 — 200 — 100 0.853 £0.003 0.821 £0.017 0.857£0.007 0.848 £0.011 0.926 4+ 0.053
400 — 200 — 100 — 50 0.770 £ 0.015 0.751 +0.045 0.838 +0.017 0.81540.020 0.959 +0.003

Table 1. Accuracy rate on the test set using different networks with the best result in boldface. The architectures indicate the number of
hidden layers and the number of hidden units per layer. NN[x] indicates a standard neural network initialized with method z: Normal
for normally distributed intialization of all weight variables with ;1 = 0 and ¢ = 0.1, Xavier for initialization highlighted in (Glorot &
Bengio, 2010), o%-scale for variance scaling initialization and Lifted for initializing with the weights and biases learned from a lifted NN.
All bias variables were initialized to 0.1 except for the Lifted case in which the bias vectors are optimized during pretraining. The neural
networks were trained for 17 epochs using mini-batch gradient descent in Tensorflow (Abadi et al., 2015). The lifted model achieves test

accuracy as high as 90 % on MNIST.

Remark 1. Although our model does not perform as well as
the other models on this task, using it as initialization results
in increased accuracy for almost all network architectures.

In particular, in Figure 1 we see that with our initialization,
the test accuracy both converges more quickly and to higher
values compared with the other initializations: in fact, across
all experiments the lifted initlization starts within 90% of its
final accuracy. This seems to indicate that the lifted model
we train on is a close approximation to a standard feed-
forward network and our weights learned are already near
optimal for these networks. Although after a few passes
of the dataset the other models converge, we usually ob-
served a constant gap between the test set accuracy using
our initialization versus the others.

8. Conclusion

In this work we have proposed a novel model for super-
vised learning. The key idea behind our method is replacing
non-smooth activation functions by smooth penalties in the
training problem; we have shown how to do this for general
monotonic activation functions. This modifies the multi-
layer neural networks optimization problem to a similar
problem which we called a lifted neural network. We ap-
plied this technique to build a model which we later use as
initialization on feedforward neural networks with ReLU ac-
tivations. Experimental results have shown that the weights
of our trained model serve as a good initialization for the pa-
rameters of classical neural networks, outperforming neural
networks with both random and structured initialization.

9. Future Work

Although lifted nets give good results when used as weight
initialization for MNIST, they have not extensively been
tested on other well known datasets such as CIFAR-10 or
other non-image based data sets. The simplest extension of
this work will be to apply lifted nets to these different data
sets and to different learning tasks such as regression. The
lifted framework also easily allows for several extensions
and variants that would be very difficult to consider in a
standard formulation. This includes handling uncertainty
in the data (matrix uncertainty) using principles of robust
optimization, optimizing over scale parameters in activation
functions, such as the a-parameter in leaky-ReL.Us, and
adding unitary constraints on the W variables. Speedup in
a distributed setting is also a point of interest. Additionally,
the lifted model can easily be adapted for both convolutional
and recurrent neural network architectures.
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Appendix A. Solving for the last layer with
cross entropy loss

In this section, we consider problem (15), which is of the
form

- ZT1=1, z>0,

(16)
where we use the notation log in a component-wise fashion,
and X° € RP*™and Y € {0,1}P*™, YT1 =1, A > 0
are given. The above can be easily solved by dual matrix
bisection. Indeed, the problem can be decomposed across
columns of Y (that is, across data points). The problem for
a single column has the following form:

min ~TrY"log Z4+\||Z - X°||%

p
p* = min—Zy,- log zi+ A z—2%3 : 2 >0, 271 =1,
A=

where vectors y € {0,1}?, yT1 = 1 and 2° € RP are given.
Dualizing the equality constraint, we obtain a Lagrangian
of the form

ﬁ Z 14 —21/+Z(Z **10g21*2zi(y+x?))7

where v is a (scalar) dual variable. At the optimum z*, we
have

) 19L(z,v) Yi o
Vi: 0= V) =z — _ 0y
i 3 o (z%,v) = 2} AT (v+z;)
leading to the unique non-negative solution
0 0
. XtV T, +Vv .
i = =1,...
% 5 T \/ ( 9 ) T3 /\ t=1,....p,

where the dual variable v is such that 172* = 1. We can
locate such a value v by simple bisection.

The bisection scheme requires initial bounds on v. For the
upper bound, we note that the property z* < 1, together
with the above optimality condition, implies

<1 _ Jr
v< 1 (7 g0).

For the lower bound, let us first define Z := {i :
k =|Z| < p. At optimum, we have

yi # 0},

Viel: —logz; S—Zyjlogz; <p* <4,
JET
—Zyi log 29 + \||2° — 29|13

s
where 20 € RP is any primal feasible point, for example
29 = 1/kifi € Z, 0 otherwise. We obtain

—0

Vi€Z : 2] > Zmin =€

The optimality conditions imply
OL(z*,v) Ui
0= =+1-
2 Z 07; Z +
% zEI “i
and therefore:

1 Yi
=1—-1T,0_ — g
pv X 2)\

i€l

T
- >1- 170 — ﬁee.
2] 2\

To conclude, we have

To solve the original (matrix) problem (16), we can pro-
cess all the columns in parallel (matrix) fashion, updating a
vector v € R™.



