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Tracking a reference trajectory with a quadcopter
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Challenge: we need faster methods for optimization
Claim: real-world optimization is parametric

Signal processing




Can machine learning speed up parametric optimization?

Goal: Do mapping quickly and accurately
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Learning to Optimize



The learning to optimize paradigm

Goal: solve the parametric minimize  fy(z)
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Challenges in learning to optimize methods

* |: Lack convergence guarantees
* |I: Lack generalization guarantees

* lll: Hard to integrate with state-of-the-art solvers

We need reliable L20 methods

Learning to Optimize: A Primer and A Benchmark [Chen. et al 2021]

“So, to conclude this article, let us quote Sir Winston Churchill: ‘Now this is not the end. It is not even

the beginning of the end. But it is, perhaps, the end of the beginning.’” Z
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Fixed-Point Optimization
Algorithms

Parameter

Learnable Optimizer

R Neural network
with weights w

6

@E‘; warm start
—Pu®) =} fixed

_point steps |

i Tgﬂ (Pw(0)) —

Loss
function

Lo

Learn with V ¢y through the fixed-point steps

« Part 2: Practical Performance
Guarantees for Classical and Learned
Optimizers




Collaborat

Georgina Brandon Bartolomeo
Hall Amos Stellato

PRINCETON
UNIVERSITY

00 Meta




Talk Outline

 Part 1: Learning to Warm-Start
Fixed-Point Optimization
Algorithms

Parameter

Learnable Optimizer

- Neural network
with weights w

6

@E% warm start
~Pu®)= 4 fixed

_point steps |

> Ty (pw(6)) —

Loss
function

Lo

Learn with V ¢y through the fixed-point steps

e Part 2: Practical Performance

Guarantees for Classical and Learned

Optimizers

10



Fixed-point optimization problems are ubiquitous

Parametric fixed-point problem: find 2 suchthat 2z = Tj(z)

Convex optimization

Problem
minimize  fo(2) Optimality conditions

" —> Fixed-point operator
(KKT conditions)

subjectto gy(z) <0

Unconstrained, smooth convex optimization

Problem Optimality conditions Fixed-point operator

——_— —

minimize fy(z) V fo(z) =0 Ty(z) =z — aV fy(z)

e

Smooth, convex 11



Many optimization algorithms are fixed-point iterations
Fixed-point iterations: 2'"! = Tp(2*)

START | o _
} 11 Initialize with 2" (a warm-start)

Terminate when IS small

Example: Proximal gradient descent

L CD Problem: limited iteration budget
minimize gg(z) + ho(2)
Convex Convex

Smooth  Non-smooth Q Solution: learn the warm-start to

lterates 2'" = prox,,, (2" — aVgy(z")) improve the solution within budget

1
prox.(v) = arg min (s(x) | > |x — vH%)

I
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Some warm starts are better than others

minimize 1027 + 23 * Optimal solution at the origin

subjectto z >0 Run proximal gradient descent to solve

All three warm starts appear to be
equally suboptimal but converge
at very different rates

fixed-point residual
=

0 20 m

evaluation iterations

The quality of the warm start depends on the algorithm i



End-to-end learning architecture

Learnable Optimizer

Loss
Parameter Neural network @% _W,?m(zt)ai function
0 with weights w v k fixed T (pos (6)) —
_point steps 0 \Pw g

Learn with V ,/y through the fixed-point steps

Loss function: 4y(z) = ||z — 2" (0)||3 Ground truth solution

Learned warm start tailored for downstream algorithm i



Benefits of our learning framework

End-to-end learning: warm-start predictions Guaranteed convergence

taillored to downstream algorithm Parameter 0

Learnable Optimizer

Loss .
Parameter | . Newal network @8 e 1 txed function Learned solver with
2 S pointsteps_+Té€(p“’(9))_’ bo
convergence

Learn with V,, ¢y through the fixed-point steps
SOl utlon z

Generalization guarantees g} Easy integration with popular solvers

minimize  (1/2)z! Px +c'x
subjectto Ax+s=10
Conic programs s €K

|.  Guarantees from k training steps

to t evaluation steps

Il. Guarantees to unseen data sol = scs solver.solve(warm start=True,
' Xx=x0, y=y0, s=s0)

Allows us to quantify solve time in seconds



Numerical Experiments

Comparing our learned warm starts @E‘é against

Baseline initializations
1. Cold-start: initialize at zero %{

2. Nearest neighbor: initialize with solution of
nearest training problem
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Robust Kalman filtering

0= {y},—o
Noisy trajectory

Robust Kalman filtering

Second-order cone program

minimize 37, [[wel|3 + o (1)
SUbjeCt to Ti41 = ACCt + Bw, Vt
Yt — C.It -+ V¢ Vit
Dynamics matrices: A, B

Observation matrix; C
Huber loss: v,

- {x,wp,vr H o

Recovered trajectory
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Robust Kalman filtering visuals

Solution after 5 fixed-point steps
with different initializations

Nearest neighbor |

B Previous solution  §
With learning, we can estimate the state well B | o5rned: 1 = 5 @E@

Noisy trajectory
B Optimal solution

R
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Current state,
previous control
reference trajectory

0 = (ajinita Uprev s

{2 Y1)

Linearized dynamics

minimize

subject to

Model predictive control (MPC) of a quadcopter

Controller Qontrol
INputs
Quadratic program
;:?—1(3375 — )T Q(wy — 2} )+
S:;r—_@l UtTRUt
Ti41 = A(0)x: + B(0)uy
X * x 1

Umin < Ut < Umin {xt y Uy }t:()

Tmin < Tt < Tmax
w1 — ug| < Au
L0 = Linit

U_1 — Uprev
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MPC of a quadcopter in a closed loop

Budget of 15 fixed-point steps

Nearest neighbor Previous solution Learned: k£ =5
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With learning, we can track the trajectory well



Image deblurring

0 =0
Blurred image

Image deblurring

Quadratic program

minimize  ||Ax — b||2 + \||z||s

subjectto 0<x <1

A: blur operator

Z

*

X

Deblurred image
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Image deblurring

percentile optimal blurred cold-start nearest
neighbor
50 fixed-point steps N
10
50th
Distance to nearest
neighbor increases
90th
99th

With learning, we can deblur all of the images quickly

learned

22
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Worst-case bounds can be very loose

fixed-point residual

101
100-

101

evaluation steps
In practice: linear convergence over the parametric family
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Worst-case analysis: sublinear convergence

Example: robust Kalman filtering

Second-order cone program

minimize 35, 2" [lwe13 + s, (v0)
subjectto x;.1 = Axy + Bw; Vit
Yy = Coxy + v Vi

SCS empirical average performance
over 1000 parametric problems

-¥-

—4 Worst-case bound

Worst-case bounds do not consider the parametric structure

Approach: solve N problems and then bound
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We will bound 0-1 error metrics

We will provide guarantees for
any measured quantity

algorithm steps tolerance
~_ /
e(0) = 1(£7(0) > )
Standard metrics Task-specific metrics:
e.g., fixed-point residual e.g., quality of extracted states
olerance in robust Kalman filtering
algorithm steps\ recovered state optimal state
f k
e(0) = 1(45 (T4 (0)) > ¢) N/

e(0) = (t max |z — a7 ||2 > e)

—1,...,
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Background: Kullback-Liebler Divergence

KL divergence: measures distance between distributions

i
Lig || p) = zqzlog( )

Our bounds on the risk will take the form
KL(empirical risk || risk) < regularizer

Invert these bounds by solving

: 1 - - : :
risk < KL~ " (empirical risk | regularizer) 1D convex optimization problem

KL~ ' (¢ | ¢) = maximize p

subject to qlog% + (1 — q) log }T_g <c
0<p<1 27



Statistical learning theory can provide probabilistic guarantees

algorithm steps tolerance

~ /
e(0) = 1(£7(9) > )

Sample convergence bound: with probability 1 — o [Langford et. al 2001]
N

Eg.xe(d) <KL~} (% Ze(é’i) logﬁ/é)

/ / /‘ Number of problems
P(%(0) > ¢) = risk < KL™! (empirical risk | regularizer)

"With probability 1 — 0, 907 of the time the fixed-point residual is below ¢ = 0.01
after &£ = 20 steps”
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Robust Kalman filtering guarantees

fixed- pomt residual: € = 0.001

ﬁxed point residual: € = 0.1
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Visualizing Robust Kalman filtering guarantees

-

“*With high probability, 90% of the time, all of the
recovered states after 15 steps of problems drawn from the
distribution will be within the correct ball with radius 0.1

Task-specific error metric

Noisy trajectory
B Optimal solution
B Solution after 15 steps

Region
with guarantee
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Talk Outline

 Part 1: Learning to Warm-Start  Part 2: Practical Performance
Fixed-Point Optimization Guarantees for Classical and Learned
Algorithms Optimizers
Learnable Optimizer ]
Parameter | _ Neural network @@ —W%T(Zt)ai e function

0 with weights w

"Tgf( w(g))_> 60

_point steps |

Learn with V ¢y through the fixed-point steps

Tutorial on Amortized Optimization [Amos 2023]

“Despite having the capacity of surpassing the convergence rates of other algorithms, oftentimes in
practice amortized optimization methods can deeply struggle to generalize and converge to
reasonable solutions.”
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PAC-Bayes guarantees for learned optimizers

algorithm steps tolerance
~_ f
e, (0) =1(07(0) > e

McAllester bound: given posterior and prior distributions [McAllester et. al 2003]
P and F,, with probability 1 — ¢

E@NgngNpew( < Kl ( ZEwaew jif (KL(P H PQ) —+ 10g(N/5)))

S

risk <|KL~' (empirical risk | regularizer)
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PAC-Bayes training architecture to optimize the guarantees

PAC-Bayes Training Learn

Training + Stochastic candidate

parameter | | earnable Optimizer solution
0 g P, P, - Zw (0) - | L20 loss
posterior prior

Use differentiable optimization
We show that the derivative always exists

We implement the learnable optimizer and train with this architecture 33



Learned algorithms for sparse coding

Noisy Sparse coding Ground ’Fruth
measurements X _ sparse signal
0 =b Recover sparse z* from b = Dz* + o 2*

D: dictionary, o: noise

Standard technique
minimize || Dz — b||3 + A||2||1

ISTA (iterative shrinkage thresholding algorithm)
( optimizer)

(Classical optimizer) | |
271 = soft threshold ( 2!+ b)

. 1] .
/T = soft threshold (zJ LDT(DZJ = b))

+ variants [Gregor and LeCun 2010, Liu et. al 2019]

soft threshold,, (z) = sign(z) max(0, |z| — 1) 34



SOth quantﬂe bound

80th quantﬂe bound

Learned ISTA results for sparse coding

90th quantﬂe bound

----------
----
-----
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K-shot Meta-Learning for Sine Curves

5.0 Neural network learning -

2.5 “ _ _ 2.5

0ol ‘o . i find weights z so that ¢, (x;) ~ y; . //\\ H//*
251 ol T el N
-5.01 | | predictor with weights = Y

2.5 0.0 2.5 o ;
T:,?,Ii?rl]ng gg;[r?tsset Gradient step Welights that generalize
| | to new points quickly
Dtram . [ OKVZL(Z, Dtram) R S

Model-Agnostic Meta-Learning (MAML) [Finn et. al 2017]
MAML learns a shared initialization z so that z performs well on test data

36



Visualizing Guarantees: K-shot Meta-Learning for Sine Curves

5.01 5.01 5.0 Used fOr
2.5 2.5 2.5 A gradients
0.0- V\ 0.0- W 0.0-
o e - — Ground
truth
5.0 —95.0- —9.0-
_'5 O 5 _'5 O 5 —l5 O 5
After 10 grad steps
5.0 5.0 5.0 — Stochastic
2.5 2.5 2.5 MAML
0.0- 0.0- 0.0- I Pretrained
o5 95, —2.5] : -
= = Region with
5.0 5.0 —5.0- MAML
_5 0 5 _5 0 5 _5 0 5

guarantee

With high probabillity, 90% of the time stochastic MAML after 10 steps will stay within the band
The pretrained baseline only stays within the band 30% of the time 37



Future directions

Connections with
Computational Robotics Lab
Optimization Learning

Learning dynamical systems,
certificates for stability and safety

Learning to optimize for robotics

Dynamical systems Focus on guarantees
and control

38



Conclusions

We do not need to sacrifice guarantees for learning-based systems

Journal of Machine Learning Research

Learning to Warm-Start (accepted conditioned
Fixed-Point Optimization Algorithms on minor revision)
https://arxiv.org/pdf/2309.07835.pdf
End-to-End Learning to Warm-Start for Learning for Dynamics and
Real-Time Quadratic Optimization Control Conference

https://arxiv.org/pdf/2212.08260.pdf

Practical Performance Guarantees To be on Arxiv soon!
for Classical and Learned Optimizers
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