Learning Algorithm Hyperparameters for Fast Parametric Convex Optimization with Certified Robustness

ICCOPT 2025
Rajiv Sambharya

Tracking a reference trajectory with a quadcopter

Success!

(If given enough time)

Current state, _____ reference trajectory

Model predictive control

optimize over a smaller horizon (T steps), implement first control, repeat

Failure: not enough time to solve

Model predictive controller

minimize
$$\sum_{t=1}^{T} \|s_t - s_t^{\text{ref}}\|_2^2$$
subject to
$$s_{t+1} = As_t + Bu_t$$
$$s_t \in \mathcal{S}, \quad u_t \in \mathcal{U}$$
$$s_0 = s_{\text{init}}$$

Control inputs

Real-world optimization is parametric

Parameter $x \rightarrow$

 $\begin{aligned} & \text{minimize} & & f(z,x) \\ & \text{subject to} & & g(z,x) \leq 0 \\ & & f \text{ and } g \text{ convex in } z \end{aligned}$

Optimal solution

$$\longrightarrow z^{\star}(x)$$

Robotics and control

Signal processing

First-order methods are widely popular again...

First-order methods use only gradient information

Fixed-point iterations $z^{k+1}(x) = T(z^k(x), x)$

Example: projected gradient descent

minimize f(z,x) convex smooth subject to $z \in \mathcal{C}(x)$ convex set

$$z^{k+1}(x) = \Pi_{\mathcal{C}(x)}(\underline{z^k(x) - \alpha \nabla f(z^k(x), x)})$$
 projection gradient step

Benefits of first-order methods

cheap iterations

embedded optimization

large-scale optimization

...But general-purpose first-order methods can converge slowly

Initialize

$$z^0(x) = 0$$

Algorithm steps

$$z^{k+1}(x) = T(z^k(x), x)$$

Terminate when

$$||z^{k+1}(x) - z^k(x)||_2 \le \epsilon$$

Problem!

In many applications, we have a budget of iterations (e.g., I only have the time to run 20 fixed-point steps)

Can machine learning speed up convex parametric optimization?

Goal: Do mapping quickly and accurately

Parameter

$$\begin{array}{ll} \text{minimize} & f(z,x) \\ \text{subject to} & g(z,x) \leq 0 \end{array}$$

Optimal solution

$$\longrightarrow z^{\star}(x)$$

Only Optimization

Only Machine Learning

$$\hat{z}^{\mathrm{ML}}(x)$$

Optimization (Machine Learning

$$\hat{z}^{\mathrm{Opt+ML}}(x)$$

The learning to optimize paradigm

Goal: solve the parametric minimize f(z,x) optimization problem fast subject to $g(z,x) \leq 0$

Learning Algorithm Hyperparameters

First-order methods as fixed-length computational graphs

Example: projected gradient descent

$$z_{\theta}^{k+1}(x) = \Pi_{\mathcal{C}(x)}(z_{\theta}^{k}(x) - \theta^{k}\nabla_{z}f(z_{\theta}^{k}(x), x))$$

- Conventional wisdom: use a constant step size
- Recent advances: vary the step size!

Altschuler et. al 2023, Grimmer 2023, Bok et. al 2024

Learning the algorithm hyperparameters framework

Provided Ntraining instances: $\{(x_i, z^*(x_i))\}_{i=1}^N$

$$\{(x_i, z^*(x_i))\}_{i=1}^N$$

Training problem

minimize
$$(1/N) \sum_{i=1}^{N} ||z_{\theta}^{K}(x_{i}) - z^{*}(x_{i})||_{2}^{2}$$

subject to $z_{\theta}^{k+1}(x_{i}) = T_{\theta^{k}}(z_{\theta}^{k}(x_{i}))$
 $z_{\theta}^{0}(x_{i}) = 0$

Optimize θ with gradient-based methods

Learned hyperparameters

- shared across problem instances
- differ across iterations

Learning step sizes for non-negative least squares

Nearest neighbor
warm start
warm starts
Sambharya et. al 2024
10000 training instances

Learned step sizes

10 training instances

Learning step sizes can be powerful

This is a highly data-efficient approach

Multi-step descent phenomenon

We learn long steps!

An extension: we can also learn momentum sizes

Composite convex optimization

Proximal operator

$$\mathbf{prox}_g(v) = \underset{u}{\arg\min} g(u) + (1/2) ||u - v||_2^2$$

Nesterov's acceleration
$$y^{k+1}(x) = \mathbf{prox}_{\alpha^k g}(z^k(x) - \alpha^k \nabla f(z^k(x), x))$$

$$z^{k+1}(x) = y^{k+1}(x) + \beta^k (y^{k+1}(x) - y^k(x))$$
 Learn $\theta^k = (\alpha^k, \beta^k)$

Example: learned hyperparameters for sparse coding

Learning momentum steps can sometimes help significantly

But what about worst-case guarantees?

10000 training instances

Learned step sizes

Learned step and momentum sizes

10 training instances

This approach lacks worst-case guarantees

Failures on out-of-distribution instances

Can we learn hyperparameters that are robust?

Nearest neighbor warm start

Learned warm starts

Learned step sizes

Learned step and momentum sizes

Certifying robustness of algorithms with learned hyperparameters

Can we learn hyperparameters that are robust?

A strong form of robustness—worst-case guarantees for all parameters in a set $\mathcal X$

$$r(z_{\theta}^{K}(x), x) \leq \gamma(\theta) \|z^{0}(x) - z^{\star}(x)\|^{2} \quad \forall x \in \mathcal{X}$$

Performance metric: e.g.,

A provided set of interest

$$r(z_{\theta}^{K}(x), x) = \|z_{\theta}^{K}(x) - z^{*}(x)\|_{2}^{2}$$
$$r(z_{\theta}^{K}(x), x) = f(z_{\theta}^{K}(x), x) - f(z^{*}(x), x)$$

Ideally, learn θ as before but constrain $\gamma(\theta) \leq \gamma^{\mathrm{target}}$

But how can we evaluate $\gamma(\theta)$?

Certified robustness for all parameters in a set

Definition:
$$(f, \mathcal{X})$$
 is $\mathcal{F}_{\mu, L}$ -parametrized if $f(\cdot, x) \in \mathcal{F}_{\mu, L}$ $\forall x \in \mathcal{X}$ μ -strongly convex, L -smooth

Example: minimize
$$(1/2)\|Az - x\|_2^2 + \lambda \|z\|_1$$
 $\mathcal{X} = \mathbf{R}^d$ (f, \mathcal{X}) is $\mathcal{F}_{\mu, L}$ -parametrized min and max eigenvalues of A^TA (g, \mathcal{X}) is $\mathcal{F}_{0, \infty}$ -parametrized

Worst-case guarantees over function

class imply worst-case guarantees over set

The Performance Estimation Problem (PEP) Framework can help us

maximize (performance metric)
$$r(z^K)$$

subject to (initial point) $z^0 = y^0, ||z^0 - z^*||_2^2 \le 1$
(optimality) $\nabla f(z^*) + \partial g(z^*) = 0$
(algorithm update) $y^{k+1} = \mathbf{prox}_{\alpha^k g}(z^k - \alpha^k \nabla f(z^k))$
 $z^{k+1} = y^{k+1} + \beta^k (y^{k+1} - y^k)$
(function class) $f \in \mathcal{F}_{\mu,L}, g \in \mathcal{F}_{0,\infty}$.

PEP: Tight convex SDP formulation using gram matrix ${\cal G}$

Drori, Teboulle, Hendrickx, Glineur, Taylor, Ryu, Grimmer, and many more

Robust training of hyperparameters

PEP-regularized training problem

minimize
$$(1/N) \sum_{i=1}^{N} \ell(z_{\theta}^{K}(x_{i}), x_{i}) + \lambda((\gamma(\theta) - \gamma^{\text{target}})_{+})^{2} \leftarrow \text{Fenalty}$$
subject to
$$y_{\theta}^{k+1}(x_{i}) = \mathbf{prox}_{\alpha^{k}}(z_{\theta}^{k}(x_{i}) - \alpha^{k} \nabla f(z_{\theta}^{k}(x_{i}), x_{i}))$$
$$z_{\theta}^{k+1}(x_{i}) = y_{\theta}^{k+1}(x_{i}) + \beta^{k}(y_{\theta}^{k+1}(x_{i}) - y_{\theta}^{k}(x_{i}))$$
$$z_{\theta}^{0}(x_{i}) = 0, y_{\theta}^{0}(x_{i}) = 0$$

differentiable optimization $\frac{\partial \gamma(\theta)}{\partial \theta}$ to compute

Amos et. al 2017, Agrawal et. al 2019

Learning robust hyperparameters for sparse coding

 $\begin{array}{c} \text{Parameter} \\ x \end{array}$

Signal reconstruction

minimize $(1/2)||Az - x||_2^2 + \lambda ||z||_1$

Reconstructed signal

 $z^{\star}(x)$

Nesterov

Learned step and momentum sizes - robust

Learned step and momentum sizes

 $\gamma = 0.01$

$$\gamma = 0.10$$

$$\gamma = \infty$$

We can train and maintain robustnesss

Guarantee holds for any $x \in \mathbf{R}^d$

Learning hyperparameters for the alternating direction method of multipliers (ADMM)

We learn hyperparameters for accelerated ADMM also

Two popular ADMM-based solvers

Stellato et al. 2020

Conic problems

min
$$(1/2)w^T P w + c^T w$$

s.t. $Aw + s = b$
 $s \in \mathcal{K}$ Convex cone

with
$$x = (P, A, c, b)$$

Accelerated Splitting Conic Solver

solve
$$\begin{bmatrix} P + \sigma I & A^T \\ -A & \rho I \end{bmatrix} \tilde{u}^{k+1} = z^k - \begin{bmatrix} c \\ b \end{bmatrix}$$
$$u^{k+1} = \Pi_{\mathbf{R}^q \times \mathcal{K}^*} (2\tilde{u}^{k+1} - z^k)$$
$$y^{k+1} = z^k + \alpha^k (u^{k+1} - \tilde{u}^{k+1})$$
$$z^{k+1} = y^{k+1} + \beta^k (y^{k+1} - y^k)$$

Time-varying hyperparameters (α^k, β^k) Time-invariant hyperparameters (σ, ρ)

Why time-invariant?

- 1. Amenable to PEP
- 2. Computational advantages—reuse matrix factorization

Model predictive control of a quadcopter

Current state, reference trajectory

Quadratic program

minimize $\sum_{t=1}^{T} \|s_t - s_t^{\text{ref}}\|_2^2$ subject to $s_{t+1} = As_t + Bu_t$ $s_t \in \mathcal{S}, \quad u_t \in \mathcal{U}$ $s_0 = s_{\text{init}}$

Control inputs

Nearest neighbor 80 iterations

Previous solution 80 iterations

Learned accel + robust 20 iterations

With learning, we can track the trajectory well

Robust Kalman filtering

Second-order cone program

minimize $\sum_{t=0}^{T-1} ||w_t||_2^2 + \psi_{\rho}(v_t)$
subject to $s_{t+1} = As_t + Bu_t$
 $y_t = Cs_t + v_t$

- Noisy trajectory
- Optimal solution

Out-of-distribution

5 iterations

Huber loss

- No learning
- Learned hyperparameters
- Learned acceleration + Robust

Learning acceleration algorithms w/robustness tracks the optimal solution

Acknowledgements

Bartolomeo Stellato

Jinho Bok

Nikolai Matni

George Pappas

Learning Algorithm Hyperparameters for Fast Parametric Convex Optimization R. Sambharya, B. Stellato

https://arxiv.org/pdf/2411.15717

Learning Acceleration Algorithms for Fast Parametric Convex Optimization with Certified Robustness

R. Sambharya, J. Bok, N. Matni, G. Pappas

https://arxiv.org/pdf/2507.16264

Conclusion

Traditional view

- General purpose
- One-size fits all
- With guarantees

Learning to optimize

- Task-specific
- Trainable
- With guarantees

Takeaways from this talk specifically

- Only learning the hyperparameter sequence dramatically improves performance
- Very low amount of training data needed
- We evaluate and train for robustness using PEP

