Learning Algorithm Hyperparameters for
Fast Parametric Convex Optimization with
Certified Robustness

ICCOPT 2025
Rajiv Sambharya

Tracking a reference trajectory with a quadcopter

‘f f Model predictive control
| i optimize over a smaller horizon (T steps),
iImplement first control,

\\\\\\\\J//// \\\\\\\\J//// opedt

Success! Failure: not enough time to solve
(If given enough time)

Model predictive controller

minimize ZtT:1 |s¢ — SiefH%

Current state, » subject to s;., = As, + Bu, » (?ontrol
reference trajectory s, €S, w eU inputs

S0 = Sinit

Real-world optimization is parametric

Parameter minimize f(z,z) Optimal solution
o ' subjectto g(z,z) <0 2" ()

f and g convexin z

Signal processing

First-order methods are widely popular again...

First-order methods use only gradient information

Fixed-point iterations z""!(z) = T'(2"(z), z)

Benefits of first-order methods
cheap Iiterations J

Example: projected gradient descent

minimize f(2,%) smoott

subjectto 2z € C(x) convex set

embedded large-scale
optimization optimization

r— e y °w oyl [EE=E
o LT

H(2) = e (27 () — aV f (27 (2), x))
/ gradient step

- _,iwi :@_)]
e sy ;
:3:: = ",::y B 10550H

ONRES ?4 5 n/,—w’\ V59C1601168QBJ31 ®

projection

PDLP 0

Applegate et al. 2021 Stellato et al. 2020 O’Donoghue et al. 2016

Many general-purpose solvers...

...But general-purpose first-order methods can converge slowly

Initialize
Fixed point

() =T (2" (x
~

Optimal solution

*

Algorithm steps), Z)

Terminate when

Problem!

In many applications, we have a budget of iterations

(e.g., | only have the time to run 20 fixed-point steps)

Can machine learning speed up convex parametric optimization?

Goal: Do mapping quickly and accurately

Parameter — Optimal solution
minimize f(z,x)

. subjectto g(z,x) <0
» Only Optimization
482

g Only Machine Learning

The learning to optimize paradigm

Goal: solve the parametric minimize f(z,)

optimization problem fast subjectto ¢g(z,x2) <0

Offine Training Learn

Data collection @

Training Optlmal Candidate
Parameters solutions ~ Iraining solution

Solve . parameter Learnable Optlmlzer
II with weights 6
Deploy

Online evaluation

Unseen Learned Optimizer @E‘%
parameter "
T «

High-quality
solution

| Loss

Learning Algorithm
Hyperparameters

First-order methods as fixed-length computational graphs

‘e
.
.
G
.
.
G
G
‘e
.,

Parameter l Fixed budget
Algorithm

Hyperparameters

(e.g., step sizes)
(6°,..., 651

Example: projected gradient descent ® Conventional wisdom: use a constant step size

k+1 k k k . Al
2T (@) = Te(a) (25 (x) — 0FV . f(25 (z),)| ® Recentadvances: vary the step size!
Altschuler et. al 2023, Grimmer 2023, Bok et. al 2024

What if we learn the step sizes?

Learning the algorithm hyperparameters framework

‘e
.
.
G
.
.
G
G
‘e
.,

Provided N N
training instances: Ui; 27(wi)) fiza

Training problem

(1/N) 32520 Nz (i) — 2 (23

minimize

subject to zg Nxy) = Tyr (25 (x4))
zg(x;) =0

Optimize § with
gradient-based methods

Learned hyperparameters

® shared across problem instances
e differ across iterations

10

Learning step sizes for non-negative least squares

Parameter .

minimize

subject to

(1/2)[|Az — |3
z > ()

3 101 N —
= 107! e
= —3
= 1073
@F
3'0-3 5 orders
= .
7 0T of magnitude
0 10 20 30
1terations
Nearest neighbor Learned Learned
Nesterov warm start warm starts step sizes
Sambharya et. al 2024

10000 training instances

10 training instances

Solution

2 ()

Learning step sizes
can be powerful

This is a highly

data-efficient approach

Multi-step
descent phenomenon

11

We learn long steps!

I

step s1zes

DO

-

1terations

0 10 20) 30

12

An extension: we can also learn momentum sizes

Composite convex optimization

Proximal operator
minimize f(z,x)+ g(z,) - "

/ \ prox, (v) = arg min g(u) + (1/2)|u - v[|3

Convex, smooth Convex

Nesterov’s acceleration

y" (@) = prox i (27 (x) — "V f(2" (), v))

) = " () + B (YT (2) — yF ()

Learn 0" = (a”, B")

Beck and Teboulle 2009

13

Example: learned hyperparameters for sparse coding

: : Reconstructed
Signal reconstruction signal
Parameter . | minimize (1/2)||Az — 2|12 + A 2|1 » N
102 in-distribution
%“ 100 Learning momentum steps
2102 can sometimes help significantly
B
210
7 10-5. But what about
. . . - ?
N 10 50 30 worst-case guarantees’
1terations
Nesterov Nearest neighbor | earned LISTA Learn_ed Learned stepland
warm start warm starts step sizes momentum sizes
el & > ¥~ -O- -

Sambharya et. al 2024

10000 training instances

Gregor and LeCun 2010

10 training instances 14

This approach lacks worst-case guarantees

: : Reconstructed
Signal reconstruction signal
Parameter - | minimize (1/2)[|A> — z||2 + A 2|1 » N
out-of-distribution
3:_09‘ _
=107 Failures on
=N out-of-distribution instances
%— 03_
P L w —~—
= 10° —— EXY Can we learn hyperparameters
0 10 20 30 |~ 4 that are robust?
1terations
Nest Nearest neighbor | earned LISTA Learned Learned step and
eSierov warm start warm starts step sizes momentum sizes
el — > ¥ @ s 2
15

Certifying robustness of
algorithms with learned
nyperparameters

16

Can we learn hyperparameters that are robust?

A strong form of robustness —worst-case guarantees for all parameters in a set X
r(zy (2),2) <y(0)]2°(2) — 2" (@)|* Ve € X

/ \ x

Performance metric: e.g., Level of A provided set of interest
robustness

r(zg (2), @) = |lz5 () — 2*(2) |3

ul

Z?(ZL‘),ZE‘) — f(25($)7x) _ f(Z*(.CL‘),:C)

Ideally, learn 6 as before

but constrain () < ~2r8t But how can we
evaluate v(0)?

17

Certified robustness for all parameters in a set

Definition: (f, X) is F, r-parametrized if f(-,z) € F, 1 Vre X

T

u-strongly convex, L-smooth

Example: minimize (1/2)||Az — z||5 + \|| 2|1 X = R¢
S— S~
f(z,2) 9(z,)

(f, X) is J ., p-parametrized

/N

min and max eigenvalues of A% A

(g, X) is Fy oo-parametrized

Worst-case guarantees over function Can leverage Performance
class imply worst-case guarantees over set Estimation Problem Analysis

18

The Performance Estimation Problem (PEP) Framework can help us

maximize (performance

subject to (initial point)
(optimality)
(

metric) r(z%)
2V =y |7 =213 < 1

Vf(z*)+dg9(z*) =0

algorithm update) y*' = prox (2" — a"V f(2"))

Pkl — gkl 6k(yk+1 B yk)

(function class) f€Fur,9€ Foco-

PEP: Tight convex SDP
formulation using gram matrix G

maximize
0 .| subject to

V Solve an SDP to evaluate Y(0)

Drori, Teboulle, Hendrickx, Glineur, Taylor, Ryu, Grimmer, and many more

Level of
tr(AoG) robustness
tr(A;(0)G) < b;,1 .. . v(6)

G =0

19

Robust training of hyperparameters

PEP-regularized training problem

Penalty

minimize (1/N) S0 0(25 (z3), 5) + M(9() — t2reet))2
subject to ka(;) = prox,, k(zg(%) ’“Vf(zg(:m),%))
’5“(i) = ylg“(xz) + 8% (yg T () — yf (24))
Zg(mz) =0 ?/9(552) =0

differentiable optimization 0v(6)

to compute 06

Amos et. al 2017, Agrawal et. al 2019

formulation

20

Learning robust hyperparameters for sparse coding

: : Reconstructed
Signal reconstruction signal
Parameter . | minimize (1/2)||4z — 2|12 + A 2|1 »
& 2" ()
In-distribution ’ Out-of-distribution
4;%'10—4 4CSD_' 10~
E el
0 10 20 30 0 10 20 30
1terations 1terations
L earned step and Learned step and
Nesterov momentum sizes - robust momentum sizes We can train and GGuarantee holds for
—h— —— maintain robustnesss any T < R“

Learning hyperparameters for the

alternating direction method of
multipliers (ADMM)

22

We learn hyperparameters for accelerated ADMM also

Conic problems

Two popular ADMM-based solvers min (1/2)w’ Pw + ¢! w

@ S.t. Aw +s=10>
OSQP 5 € K\Convex cone

Stellato et al. 2020

with = = (P, A, c,b)

] Time-varying hyperparameters (Cvk, 5 k)
~k4+1 _ _k . . .
U =2z — Time-invariant hyperparameters (U) /0)

b = TRrawie~ (207 — 27)

Why time-invariant?
1. Amenable to PEP
2. Computational advantages—reuse matrix factorization

Model predictive control of a quadcopter

Quadratic program

minimize S:f_l s, — ste|2
Current state, » subject to s;., = As, + Bu, » (?ontrol
reference trajectory s, €S, w eU inputs

S0 = Sinit

With learning, we

can track the
\/ \/ \/ trajectory well

Nearest neighbor Previous solution Learned accel + robust
80 iterations 80 iterations 20 Iterations 24

Robust Kalman filtering

Second-order cone program
Huber loss

minimize "
subject to

"o den s

Noisy trajectory
In-distribution Out-of-distribution

@ Optimal solution
A 5 iterations

"= No learning

Learned hyperparameters

7~

B Learned acceleration + Robust

Learning acceleration algorithms w/

robustness tracks the optimal solution

Acknowledgements

Bartolomeo Stellato Jinho Bok

““¥ PRINCETON P
'UNIVERSITY @ Cl1

UNIVERSITY 0f PENNSYLVANIA

R. Sambharya, B. Stellato
https://arxiv.org/pdf/2411.15717

R. Sambharya, J. Bok, N. Matni, G. Pappas
https://arxiv.org/pdf/2507.16264

Nikolai Matni George Pappas

& Penn & Penn

UNIVERSITY 0f PENNSYLVANIA UNIVERSITY 0f PENNSYLVANIA

20

Conclusion

Traditional view Learning to New view

e General purpose optimize e Task-specific
ﬁ .
® One-size fits all e Trainable

e With guarantees e \With guarantees

Takeaways from this talk specifically

e Only learning the hyperparameter sequence dramatically improves performance

e \/ery low amount of training data needed
¢ \\We evaluate and train for robustness using PEP

@ sambhar9@seas.upenn.edu @ rajivsambharya.qgithub.io

27

http://rajivsambharya.github.io
mailto:rajivs@princeton.edu

