Learning to Warm-Start Fixed-Point Optimization Algorithms

Rajiv Sambharya INFORMS 2023

Collaborators

Georgina Hall

Brandon Amos

Bartolomeo Stellato

Fixed-point problems need solutions in real-time

Fixed-point problem: find z such that z = T(z)

Robotics and control

Signal processing

Energy

Machine learning

Can machine learning speed up parametric optimization?

Often, we solve parametric fixed-point problems from the same family

Goal: Do mapping efficiently

Parameter

find z such that $z = T_{\theta}(z)$

Optimal solution

$$\longrightarrow z^{\star}(\theta)$$

Only Optimization

 $\hat{z}(\theta)$ Accurate Slow to compute

Only Machine Learning

 $\rightarrow \hat{z}(\theta)$

Inaccurate
Fast to compute

Optimization + Machine Learning

Goals: Accurate Fast to compute ₁

Many optimization algorithms are fixed-point iterations

Fixed-point iterations: $z^{i+1} = T_{\theta}(z^i)$

Initialize with z^0 (a warm-start)

Terminate when $f_{ heta}(z^i) = \|T_{ heta}(z^i) - z^i\|_2$ is small

Fixed-point residual

Example: Proximal gradient descent

minimize $g_{\theta}(z) + h_{\theta}(z)$

Convex Convex Smooth Non-smooth

Iterates $z^{i+1} = \text{prox}_{\alpha h_{\theta}}(z^i - \alpha \nabla g_{\theta}(z^i))$

$$\mathbf{prox}_s(v) = \operatorname*{arg\,min}_x \left(s(x) + \frac{1}{2} \|x - v\|_2^2 \right)$$

Operator $T_{\theta}(z) = \operatorname{prox}_{\alpha h_{\theta}}(z - \alpha \nabla g_{\theta}(z))$

Problem: limited iteration budget

Solution: learn the warm-start to improve the solution within budget

Learning Framework

End-to-end learning architecture

Learn with $\nabla_w \ell_\theta$ through the fixed point steps

Loss function: $\ell_{\theta}(z) = \|z - z^{\star}(\theta)\|_{2}$ Ground truth solution

End-to-end learning scheme

Some warm-starts are better than others

minimize $10z_1^2 + z_2^2$ subject to $z \ge 0$

Optimal solution at the origin Run proximal gradient descent to solve

All three warm starts appear to be equally suboptimal but converge at very different rates

Theoretical advantages of architecture

Major benefit of learned warm-starts: fixed-point iterations always converge

Flexibility: # of evaluation steps can differ from # of train steps

Number of fixed-point steps

Guarantees from k training steps to t evaluation steps

 β -contractive case $f_{\theta}(T_{\theta}^{t}(z)) \leq 2\beta^{t-k}\ell_{\theta}(T_{\theta}^{k}(z))$

Generalization bounds to unseen data

β -contractive case

Theorem 1. With high probability over a training set of size N, for any γ ,

As $N \to \infty$, the **penalty term** decreases

As $t \to \infty$, the **penalty term** goes to zero

Derived from the PAC-Bayes framework Non-contractive case: we provide similar bounds

Numerical Experiments

Sparse PCA

Semidefinite relaxation

maximize $\mathbf{Tr}(AX)$ subject to $\mathbf{Tr}(X) = 1$

 $\mathbf{1}^T |X| \mathbf{1} \le c$

 $X \succeq 0$

 $\theta = \text{vec}(A)$

Different initializations

Baselines Cold-start Nearest neighbor

Robust Kalman filtering

Can be formulated as an SOCP With learning, we can estimate the state well

Solution after 5 fixed-point steps with different initializations

Learned: k=5

Model Predictive Control of a quadcopter in closed loop

Problem parameters: Initial state, linearized dynamics, reference trajectory Budget of 15 fixed-point steps to solve each QP

Nearest neighbor

Previous solution

Learned: k = 5

With learning, we can track the trajectory well

Image deblurring

Can be formulated as a QP 50 fixed-point steps

percentile optimal blurred cold-start learned nearest neighbor $10^{\rm th}$ 50^{th} 90^{th} **QQ**th

Distance to nearest neighbor increases

With learning, we can deblur all of the images quickly

Benefits of our learning framework

End-to-end learning: warm-start predictions

tailored to downstream algorithm

Guaranteed convergence

Can interface with state-of-the-art solvers

Generalization to

Future iterations Unseen data

Quadratic programs Conic programs

rajivs@princeton.edu

rajivsambharya.github.io

