End-to-End Learning to Warm-Start
for Real-Time Quadratic Optimization
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Motivation Generalization Guarantees

- We often need to solve parametric quadratic programs (QPs) quickly. Contractive operator (Assumption) : Ty is S-contractive for 5 € (0,1) if
- Standard algorithms are not designed to solve parametric problems. 1To(2) = To(w)|l2 < Bl[z —wll2 Vz,w € dom(Tp).

» Can we use machine learning to accelerate parametric quadratic Rademacher complexity: The empirical Rademacher complexity of
optimization by learning a good warm-start from data? a function class F is

1 N
erad(fF) = -E, [?gg;aif(ei))] .
Quadratic program
minimize  (1/2)27 Pr + Tz Theorem 1. Suppose all operators Ty are 3-contractive for 5 € (0,1). Let H
be the set of ReLU neural networks such that for any hy, € H,

distgax 7, (h(0)) < B forsome B > 0 and any 6 € ©. Then, with probability at
s 20 least 1 — & over the draw of i.i.d samples,

subjectto Ax+s=b

. (‘;V;t:(]ﬁ?fi?fﬁ;’ o R(hw) < R(hw) +2v25" (2erad(H) + Blog(1/8)/(2N)), Vhw € .

where k is the number of DR iterations and N is the number of training samples.

Corollary 1. Let H be the set of linear 7(‘unct)ions with bounded norm, i.e., H =
. . _ d m-+n)Xd 2 <
COntrlbUthnS {h | h(9) W@} where 0 s R, W eR and (1/2)|\W_]!F < B for some
B > 0. Then, with probability at least 1 — ¢ over the draw of i.i.d samples,

« We propose a principled framework to learn high quality warm-starts X .
for parametric QPs. R(hw) < R(hw) +2v28 (2P2(9)\/ 2d/N + BlOg(1/5)/(2N)) , Vhy € H,

« We combine operator theory and Rademacher complexity theory to , , , _ .
obtain novel generalization bounds for contractive operators. where k is the number of DR iterations, N is the number of training samples,

- We benchmark our approach with various real-time applications. and p>(¢) = maxoee ||0][2-

Learning Framework Numerical Experiments

Linear complementarity problem Vehicle tracking

C e T o ref\NT _ref T
findust C3ul Mu+tqeC* minimize 3 iy (ye = 47)" Qulys = 9i7) + g Bue (0 T, Uy, P )
. subjectto xz;11 = A(v)zy + B(v)uy + E(v)d; iy e g
P A v
o . DN m usl < u
M=1_, q=(c,0),C =R xR} ue] < . A(v), B(v), E(v): dynamics
ur —ur—1| < Au L -
: : _c u, Au: control limits
Monotone inclusion problem . solve with DR splitting Yo = L2y O observation matrix
find u s.t. 0 € Mu + q + Ne¢(u) - work with the dual vector = L0 = Linit O,. R: costs
Algorithm 1 The DR Splitting algorithm for k£ iterations. Markowitz portfolio
Inputs: initial point 2°, problem data (1, ¢), kK number of iterations maximize puTx — T3z 0= p
Output: approximate solution z* subjectto 17z = 1 . 12 returns
For:=0,....,k—1do >0 . Y covariance
Wit = (M + )7 (2 — q) fixed point operator T2 '
4t = Il (2uit — 2) i _» Sit1 * p: hyperparameter
2L = 2t gttt vehicle markowitz
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Standard DR splitting

, , k DR iterations
- Starts with a random point, z° . y
- We learn the warm-start instead ~ _>_" " _’Z (0)
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Our architecture

test fixed point residuals

fixed point residual
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% DR iterations B no warm-start M nearest neighbor warm-start
O>hy(0) —>—>- . — 25, (0) =] ¢, learned warm-start k£ ={l 5 & 15 M 50}

/ o warm-start  The learned warm-start reduces the number of DR iterations to reach a
given accuracy by at least 30% and as much as 90%.

- Neural network with weights W = {W,}L_,

* hw(0) = Wro(Wr_16(. .. p(W10)))
+ Let H be all the mappings, hyy, considered

Conclusions

* We accelerate quadratic optimization by learning a good warm-start.
We prove generalization bounds in the contractive case.
We provide numerical results for a vehicle tracking problem E E

Learning task

- Training objective: to minimize the empirical risk _ o
and a portfolio optimization problem.

N
C ~ 1
minimize R*(hyy) = ~ > Lo, (Ty (hw(6:))) Accepted: 5th Conference on Learning for
=1

. . i= . o Dynamics and Control, 2023
- The ultimate goal is to reduce the generalization error and minimize the . _
risk, R*(hyy) = E[lo(TE (hy(6))]. Arxiv link: https://arxiv.org/pdf/2212.08260.pdf




