Data-Driven Performance Guarantees
for Classical and Learned Optimizers

PRINCETON
UNIVERSITY

Context and Motivation

* In real-world optimization we often repeatedly solve similar instances of
the same parametric problem.

« Worst-case bounds for classical optimizers can be loose since they do
not take advantage of the parametric structure.

« Learned optimizers use machine learning to accelerate optimizers over
the parametric family, but lack generalization guarantees.

Finance
Fixed-point algorithm
2HHO) = T(2%(9),0)

Machine learning | Eergy

Lﬁobotics»
Parametric problem
minimize f(z,6)

decision variable z parameter 0 ~ X

Contributions

* We use a sample convergence bound to provide probabilistic guarantees
for classical optimizers over a parametric distribution of problems.

« We construct generalization bounds for learned optimizers using PAC-
Bayes theory and directly optimize the bounds themselves.

- We show the strength of our guarantees with numerical examples.

Part |: Guarantees for Classical Optimizers
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Motivation
Example: image deblurring

minimize  ||Ax — b||2 + \||z||1
subjectto 0<x <1
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Part |l: Guarantees for Learned Optimizers

Motivation

« Learning to optimize is a paradigm that uses machine learning to accel-
erate optimizers over a parametric family of problems.

« Learned optimizers lack generalization guarantees to unseen data and
can fail to converge to reasonable solutions since the algorithm steps
are replaced with learned variants.

Recipe for generalization guarantees

algorithm steps ~__ tolerance

e (0) = 1(€7,(0) > ¢)

learnable weights

McAllester bound: given posterior and prior distributions

. . [McAllester et. al 2003]
P and F,, with probability 1 — ¢

% (KL(P || Po) + log(N/5)))

/

~1 (empirical risk | regularizer)

Optimize the bounds
directly

Recipe for probabilistic guarantees

algorithm steps

e() :T@k(e) > e‘)/

Step 1
Run k steps
for N parametric problems

tolerance

Any metric (e.g., fixed-point residual)

Step 2
Bound the risk w.p. 1 — 9
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Numerical Experiment: sparse coding
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Numerical Experiment: image deblurring
99th quantile bound
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With 1000 samples, we provide strong probabilistic

guarantees on the 99th quantile

Noisy Sparse coding Ground truth
measurements sparse signal
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Standard technique
minimize || Dz — b||2 + \||2|1
Classical ISTA 1
optimizer 2?1 = soft threshold A ( L(Dzj b))
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Learned optimizers provably
perform well in just 10 steps

Our bounds are close to
empirical performance



