Data-Driven Performance Guarantees for Classical and Learned Optimizers

Rajiv Sambharya, Bartolomeo Stellato

Context and Motivation

- In real-world optimization we often repeatedly solve similar instances of the same parametric problem.
- Worst-case bounds for classical optimizers can be loose since they do not take advantage of the parametric structure.
- Learned optimizers use machine learning to accelerate optimizers over the parametric family, but lack generalization guarantees.

Machine learning Robotics

Parametric problem

minimize $f(z,\theta)$

decision variable z

Fixed-point algorithm $z^{k+1}(\theta) = T(z^k(\theta), \theta)$

parameter $heta \sim \mathcal{X}$

Contributions

- We use a sample convergence bound to provide probabilistic guarantees for classical optimizers over a parametric distribution of problems.
- We construct generalization bounds for learned optimizers using PAC-Bayes theory and directly optimize the bounds themselves.
- We show the strength of our guarantees with numerical examples.

Part I: Guarantees for Classical Optimizers

Recipe for probabilistic guarantees

Numerical Experiment: image deblurring

guarantees on the 99th quantile

Part II: Guarantees for Learned Optimizers

Motivation

- Learning to optimize is a paradigm that uses machine learning to accelerate optimizers over a parametric family of problems.
- Learned optimizers lack generalization guarantees to unseen data and can fail to converge to reasonable solutions since the algorithm steps are replaced with learned variants.

Recipe for generalization guarantees

McAllester bound: given posterior and prior distributions [McAllester et. al 2003] P and P_0 , with probability $1 - \delta$

$$\mathbf{E}_{\theta \sim \mathcal{X}} \mathbf{E}_{w \sim P} e_w(\theta) \leq \mathrm{KL}^{-1} \left(\frac{1}{N} \sum_{i=1}^N \mathbf{E}_{w \sim P} e_w(\theta_i) \bigg| \frac{1}{N} \left(\mathrm{KL}(\mathrm{P} \parallel \mathrm{P}_0) + \log(\mathrm{N}/\delta) \right) \right)$$
 risk $\leq \mathrm{KL}^{-1} \left(\mathrm{empirical\ risk} \mid \mathrm{regularizer} \right)$

Optimize the bounds directly

Numerical Experiment: sparse coding

Standard technique minimize $||Dz - b||_2^2 + \lambda ||z||_1$

Classical optimizer

Not learned

 $z^{j+1} = \mathsf{soft} \; \mathsf{threshold}_{\frac{\lambda}{L}} \left(z^j - \frac{1}{L} (Dz^j - b) \right)$

Learned optimizer Learned ISTA (LISTA) $z^{j+1} = \text{soft threshold}_{\psi^j} \left(W_1^j z^j + W_2^j b \right)$

Learned

