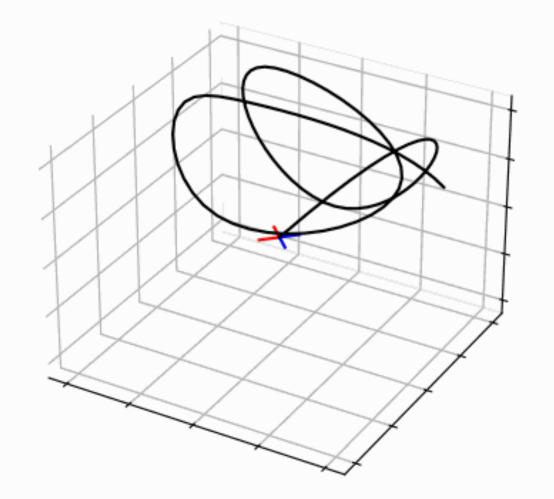
Learning to Warm-Start Fixed-Point Optimization Algorithms

Yale Robotics Seminar 2023 Rajiv Sambharya

Tracking a reference trajectory with a quadcopter



Model predictive control

Model predictive controller

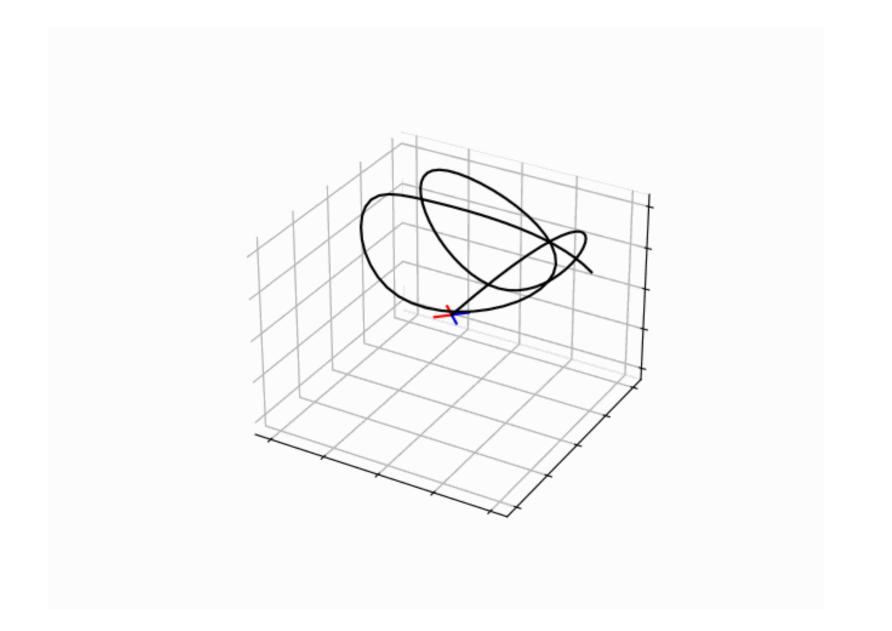
Current state, reference trajectory

minimize $\sum_{t=1}^T (x_t - x_t^{\mathrm{ref}})^T Q(x_t - x_t^{\mathrm{ref}})$ subject to $x_{t+1} = Ax_t + Bu_t$ $x_t \in \mathcal{X}, \quad u_t \in \mathcal{U}$ $x_0 = x_{\mathrm{init}}$

Optimal controls

Challenge: we need faster methods to solve optimization problems

Robotics and control

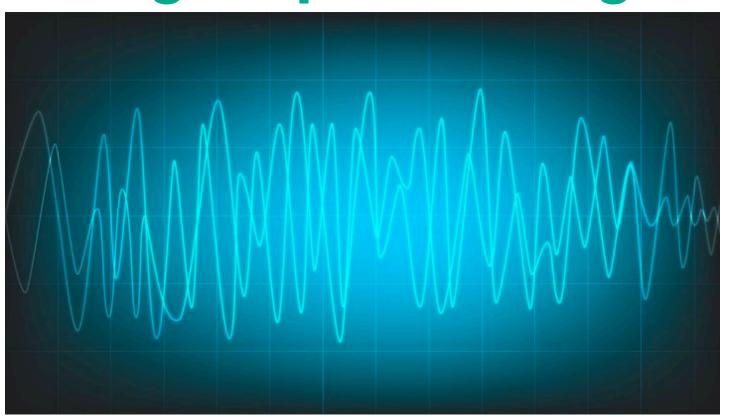


We sometimes need solutions in ~10 milliseconds or less

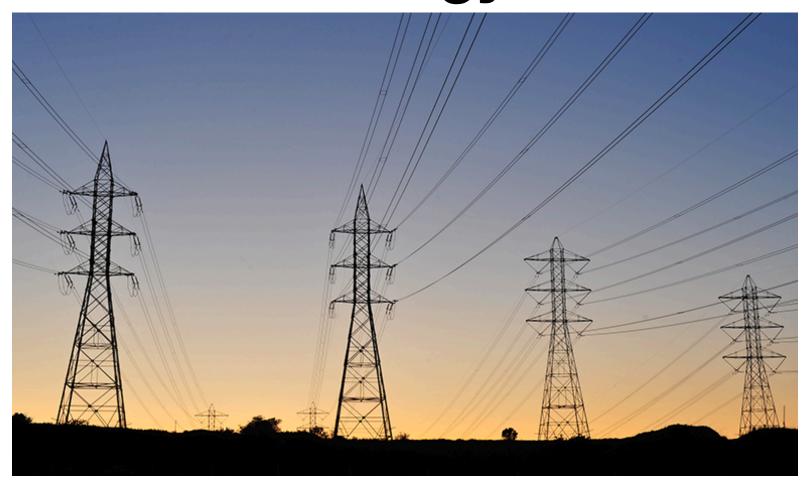
Claim: Real-world optimization is parametric

Robotics and control

Signal processing



Energy



Machine learning

Can machine learning speed up parametric optimization?

Often, we solve parametric optimization problems from the same family

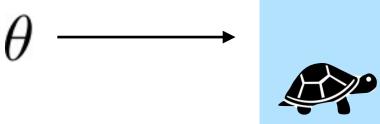
Goal: Do mapping quickly and accurately

Parameter

 $\begin{array}{ll} \text{minimize} & f_{\theta}(z) \\ \text{subject to} & g_{\theta}(z) \leq 0 \end{array}$ minimize

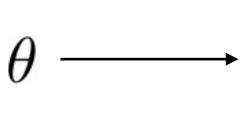
Optimal solution

$$\longrightarrow z^{\star}(\theta)$$



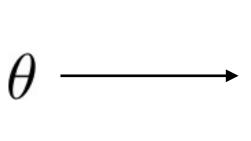
Only Optimization

 $\longrightarrow \hat{z}^{\mathrm{Opt}}(\theta)$

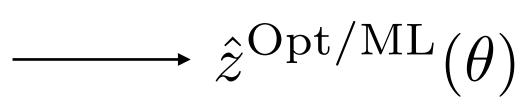


Only Machine Learning

 $\hat{z}^{\mathrm{ML}}(\theta)$



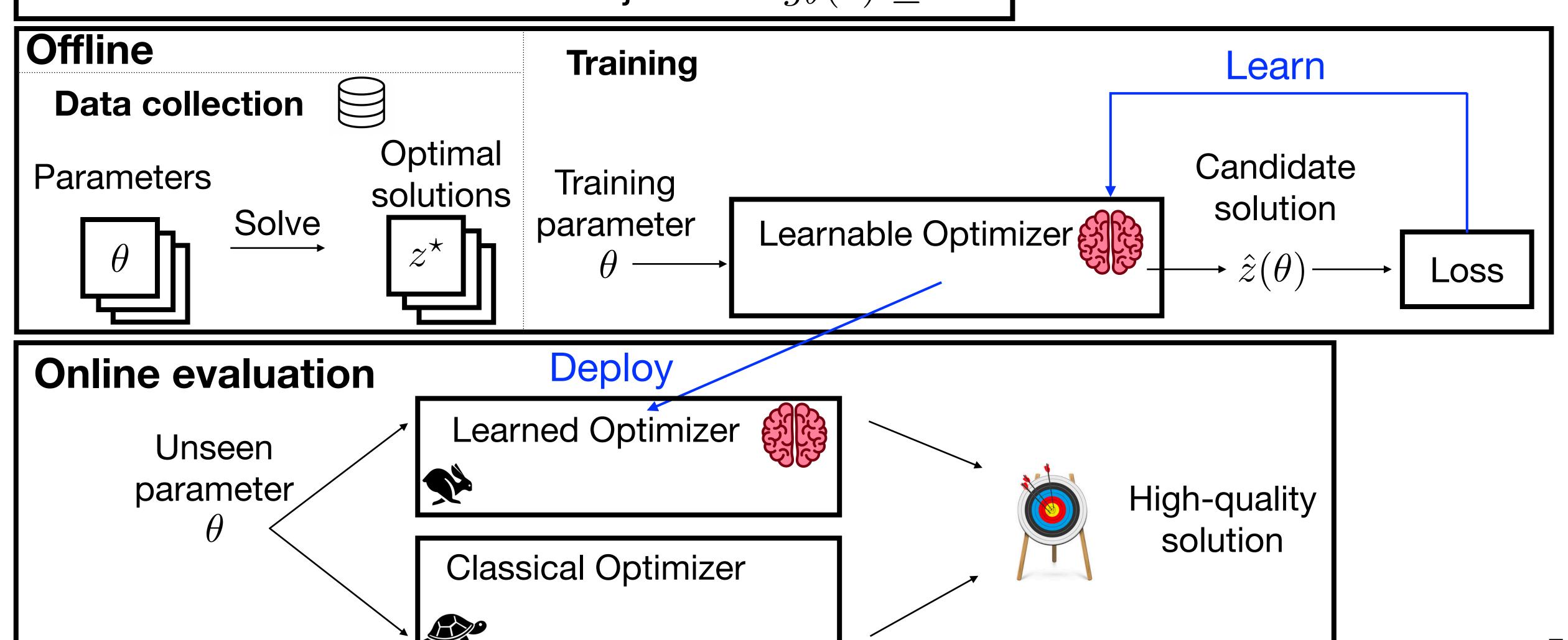
Optimization Machine Learning



Learning to Optimize

The learning to optimize paradigm

Goal: solve the parametric minimize $f_{\theta}(z)$ optimization problem fast subject to $g_{\theta}(z) \leq 0$



Learning to optimize is a growing research area

Inverse problems

(Gregor and LaCun 2010) (Liu et. al 2018) (Wu et. al 2020)

Convex optimization

(Venkataraman and Amos 2021)
(Ichnowski et. al 2021)
(Heaton et. al 2020)
(Jung et. al 2022)

Integer programming

Excellent tutorials

Learning to Optimize: A Primer and a Benchmark (Chen et. al 2021)

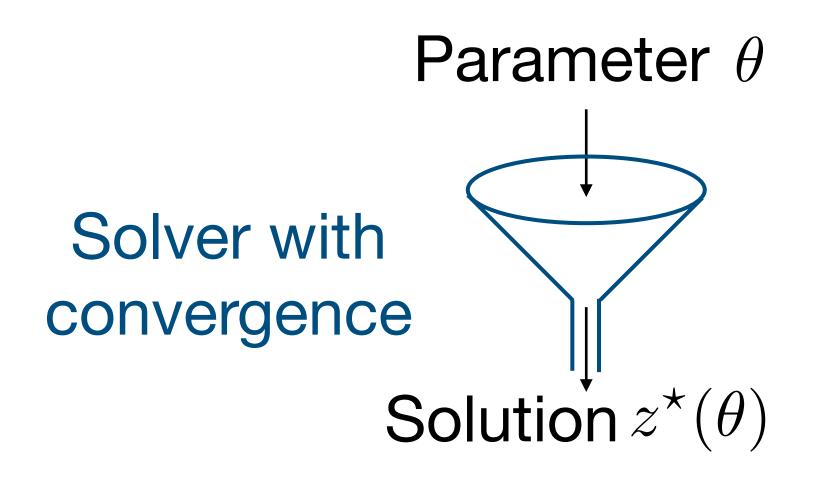
Tutorial on Amortized Optimization (Amos 2022)

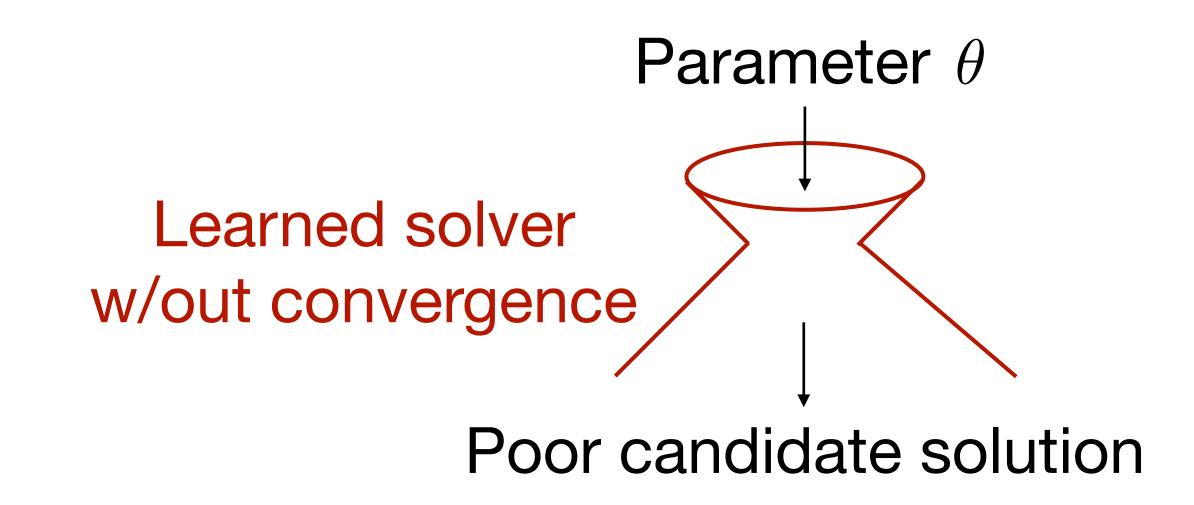
Issues in learning to optimize (L2O) methods

- I: Lack convergence guarantees
- II: Lack generalization guarantees
- III: Incompatibility with state-of-the-art solvers

We need reliable L20 methods

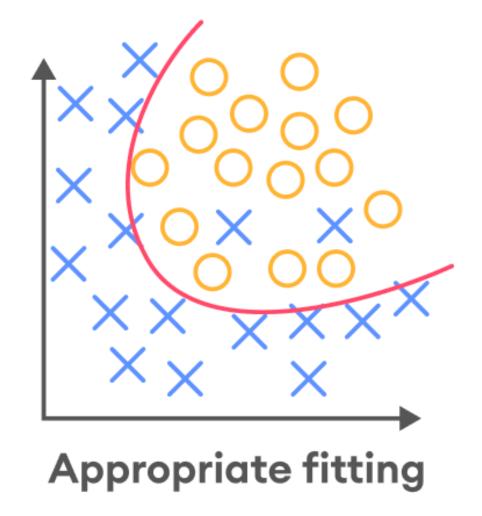
L20 Challenge I: Convergence guarantees

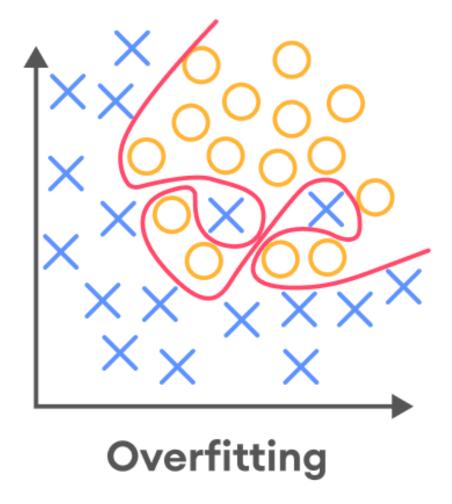




L20 Challenge II: Generalization guarantees

To unseen problems





L2O Challenge III: Incompatibility with state-of-the-art solvers

Existing state-of-the-art solvers are highly optimized

Written in low-level languages

When learning the algorithm steps, we cannot use these solvers

Learning to Warm-Start Fixed-Point Optimization Algorithms

Collaborators

Georgina Hall

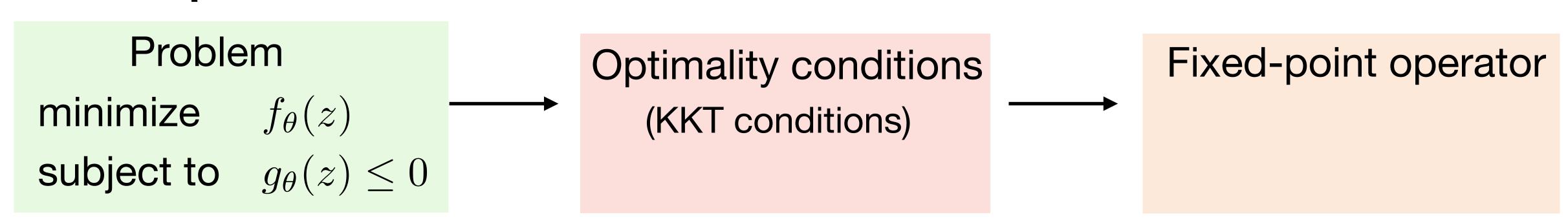
Brandon Amos

Bartolomeo Stellato

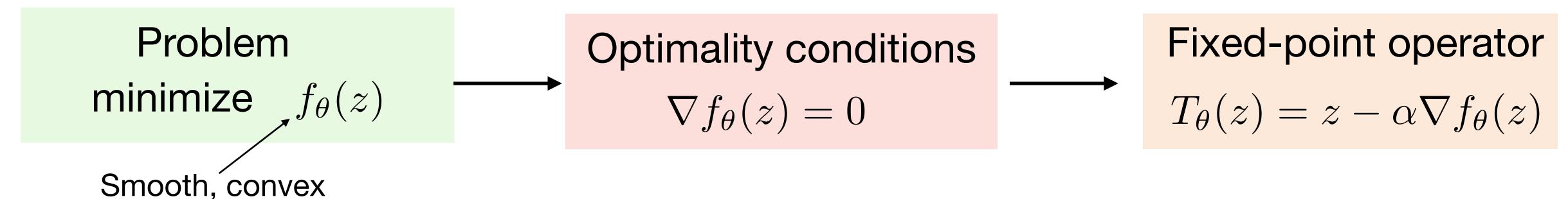
Fixed-point optimization problems are ubiquitous

Parametric fixed-point problem: find z such that $z = T_{\theta}(z)$

Convex optimization



Unconstrained, smooth convex optimization



Many optimization algorithms are fixed-point iterations

Fixed-point iterations: $z^{i+1} = T_{\theta}(z^i)$

Initialize with z^0 (a warm-start)

Terminate when $f_{ heta}(z^i) = \|T_{ heta}(z^i) - z^i\|_2$ is small

Fixed point residual

Example: Proximal gradient descent

minimize $g_{\theta}(z) + h_{\theta}(z)$

Convex Convex Smooth Non-smooth

Iterates $z^{i+1} = \text{prox}_{\alpha h_{\theta}}(z^i - \alpha \nabla g_{\theta}(z^i))$

$$\mathbf{prox}_s(v) = \operatorname*{arg\,min}_x \left(s(x) + \frac{1}{2} \|x - v\|_2^2 \right)$$

Operator $T_{\theta}(z) = \operatorname{prox}_{\alpha h_{\theta}}(z - \alpha \nabla g_{\theta}(z))$

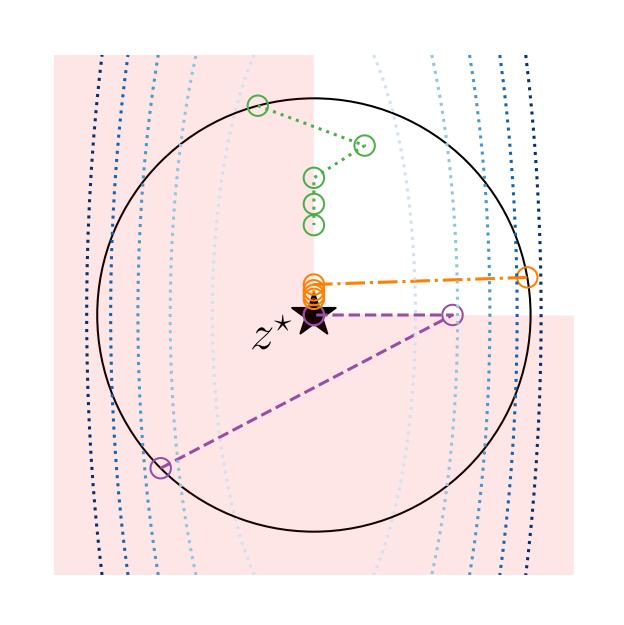
Problem: limited iteration budget

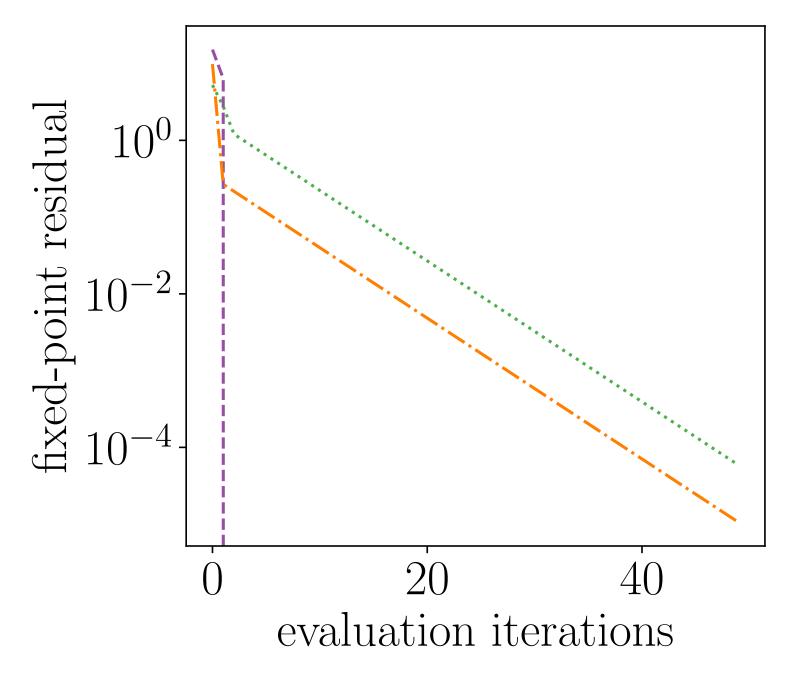
Solution: learn the warm-start to improve the solution within budget

Some warm-starts are better than others

minimize $10z_1^2 + z_2^2$ subject to $z \ge 0$

Optimal solution at the origin Run proximal gradient descent to solve

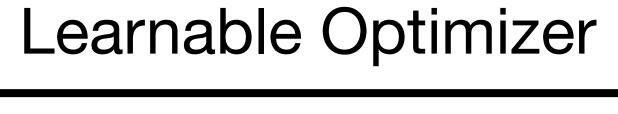


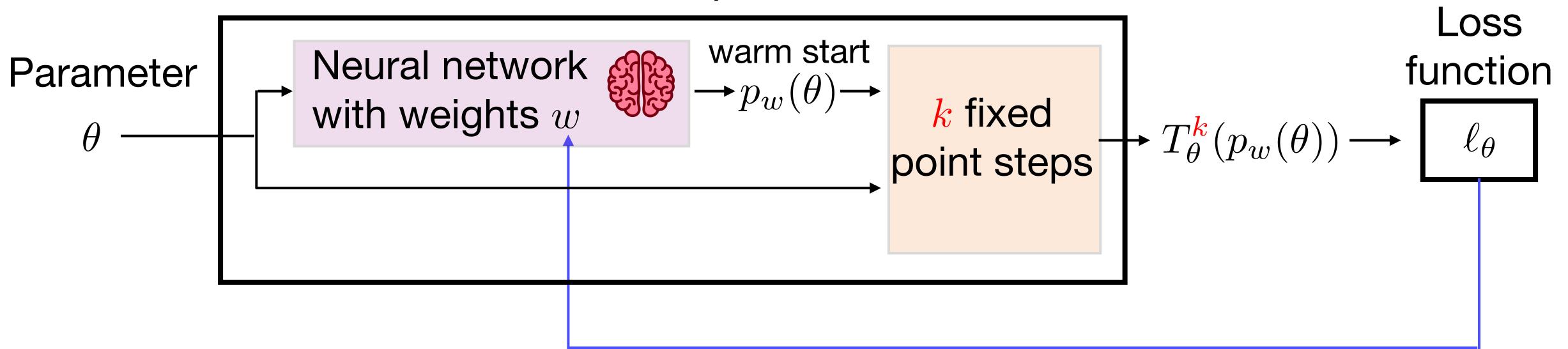


All three warm starts appear to be equally suboptimal but converge at very different rates

Learning Framework

End-to-end learning architecture





Learn with $\nabla_w \ell_{\theta}$ through the fixed point steps

Loss function: $\ell_{\theta}(z) = \|z - z^{\star}(\theta)\|_2$ Ground truth solution

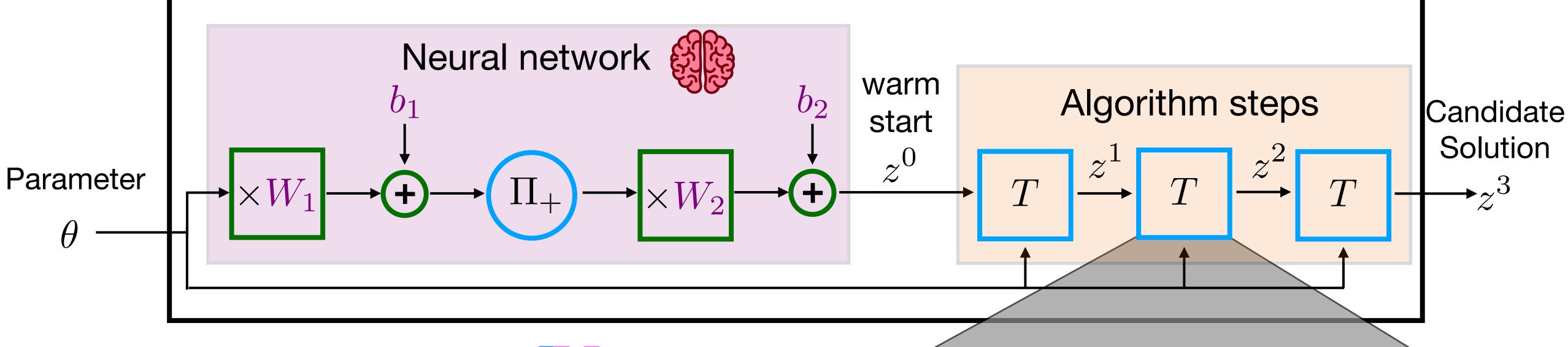
Learned warm start tailored for downstream algorithm

An example architecture

minimize $1/2z^TPz + \theta^Tz$

subject to $z \ge 0$

Fixed-point operator: $T_{ heta}(z) = \Pi_{+}\left((I - \alpha P)z - \alpha heta
ight)$

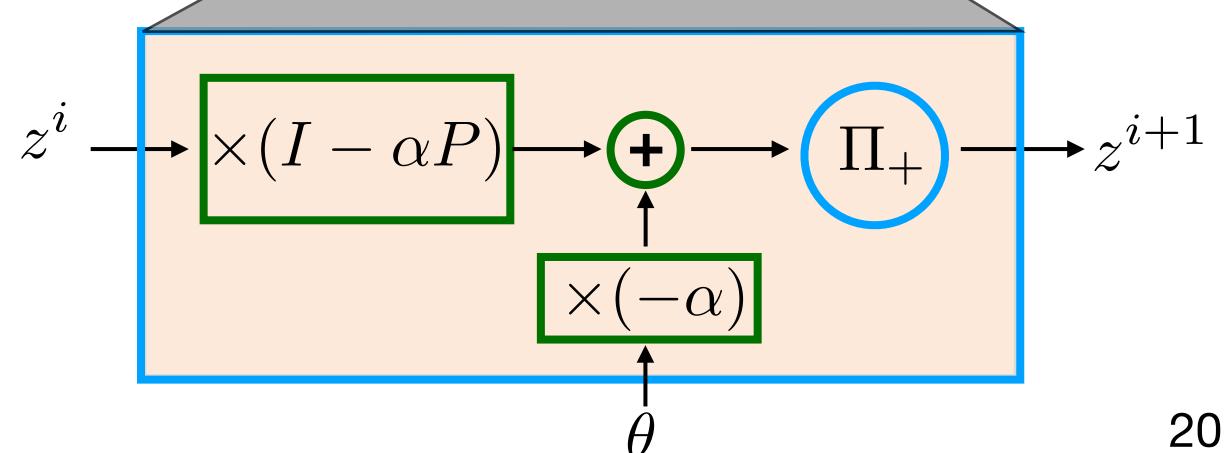


Computational Graph

Linear components

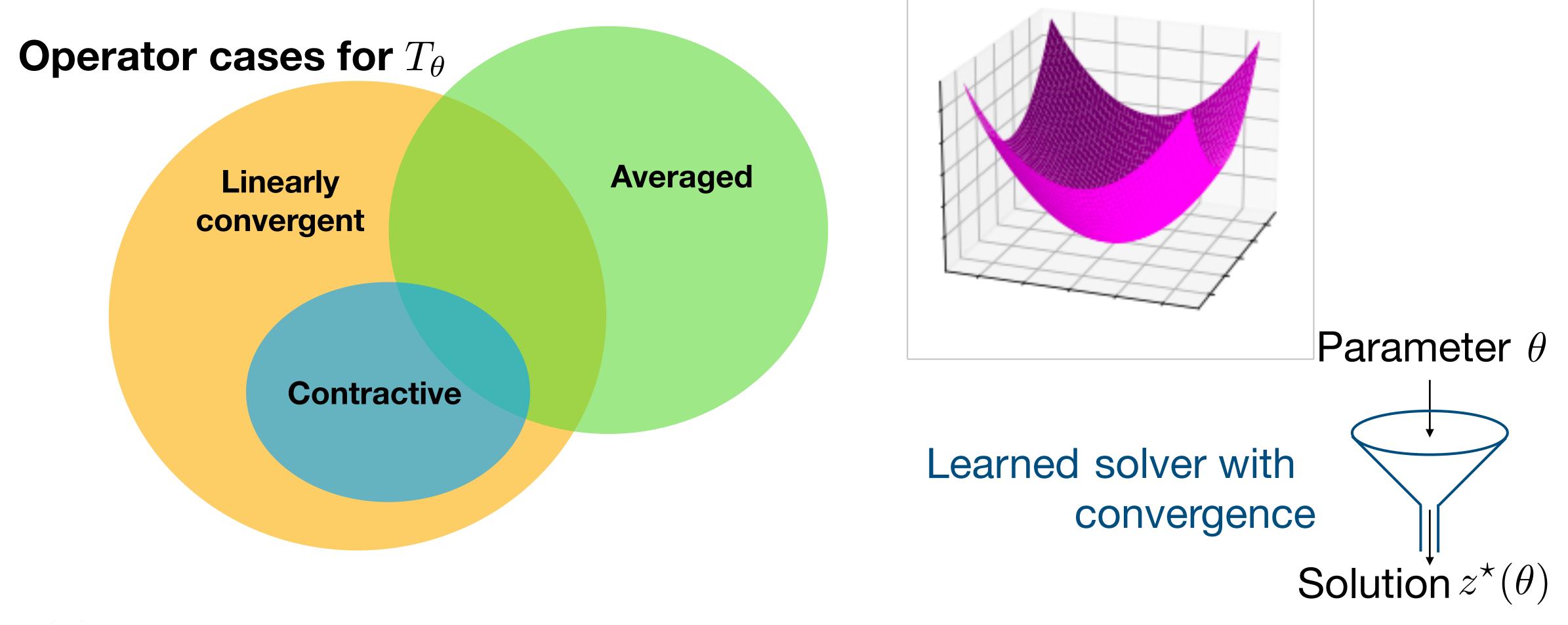
Non-linear components

 W_1, b_1, W_2, b_2 Learnable components



Convergence and Generalization Bounds

Guaranteed convergence independent of warm-start



Convergence always guaranteed for learned warm starts

Generalization bounds: train for k, evaluate for t

Flexibility: # of evaluation steps can differ from # of train steps

Number of fixed-point steps

Guarantees from k training steps to t evaluation steps

 β -contractive case $f_{\theta}(T_{\theta}^{t}(z)) \leq 2\beta^{t-k}\ell_{\theta}(T_{\theta}^{k}(z))$

Generalization bounds to unseen data

β -contractive case

Theorem 1. With high probability over a training set of size N, for any γ ,

As $N \to \infty$, the **penalty term** decreases

As $t \to \infty$, the **penalty term** goes to zero

Derived from the PAC-Bayes framework Non-contractive case: we provide similar bounds

Learned warm-start can easily interface with solvers

Written in

Quadratic programs

minimize
$$(1/2)x^TPx + c^Tx$$
 subject to $\ell \leq Ax \leq u$

$$\begin{array}{ll} \text{minimize} & (1/2)x^TPx + c^Tx \\ \text{subject to} & Ax + s = b \\ & s \in \mathcal{K} \end{array}$$

We code exact replicas of OSQP and SCS
Allows us to make timing comparisons for QPs and conic programs

Numerical Experiments

We evaluate the gain over a cold-start

Baseline initializations

1. Cold-start: initialize at zero

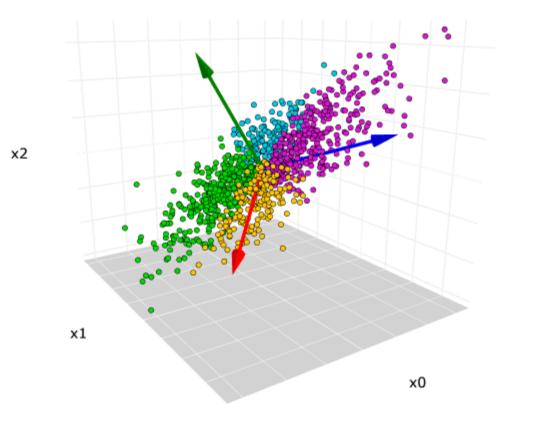
2. Nearest neighbor: initialize with solution of nearest training problem

Metrics plotted

- 1. Fixed-point residual
- 2. Gain over the cold-start

$$\mathrm{gain} = \frac{f_{\theta}(T_{\theta}^{t}(0))}{f_{\theta}(T_{\theta}^{t}(p_{w}(\theta)))}$$

Sparse PCA



Non-convex problem

maximize $x^T A x$ subject to $||x||_2 \le 1$ ${\bf Card}(x) \le c$

Covariance matrix

Sparse PCA

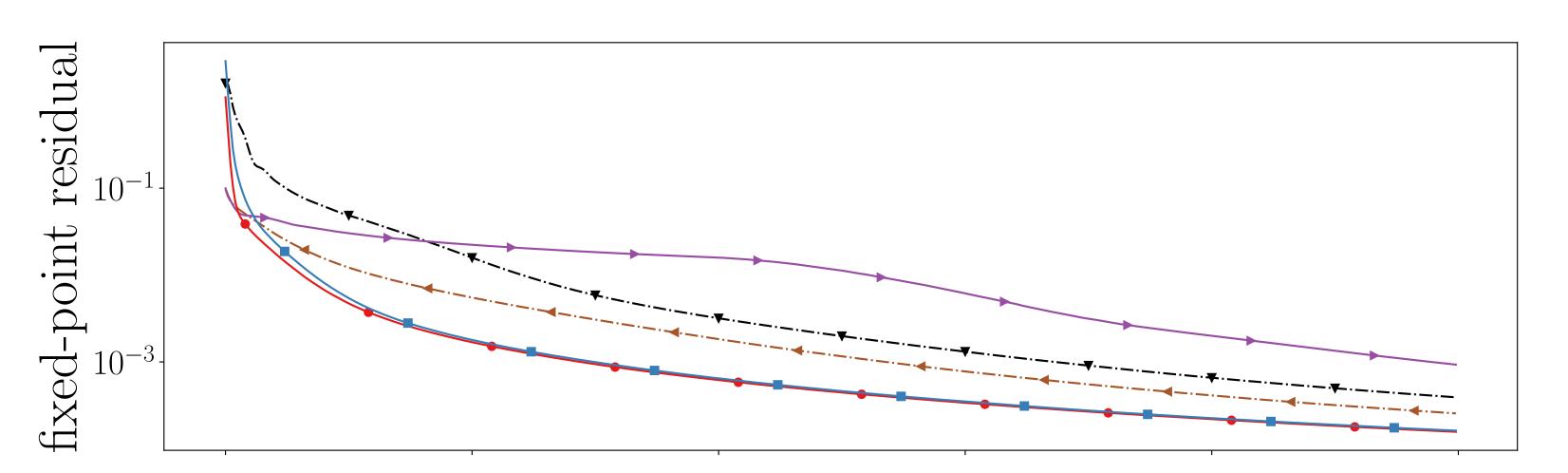
$$\theta = \text{vec}(A)$$

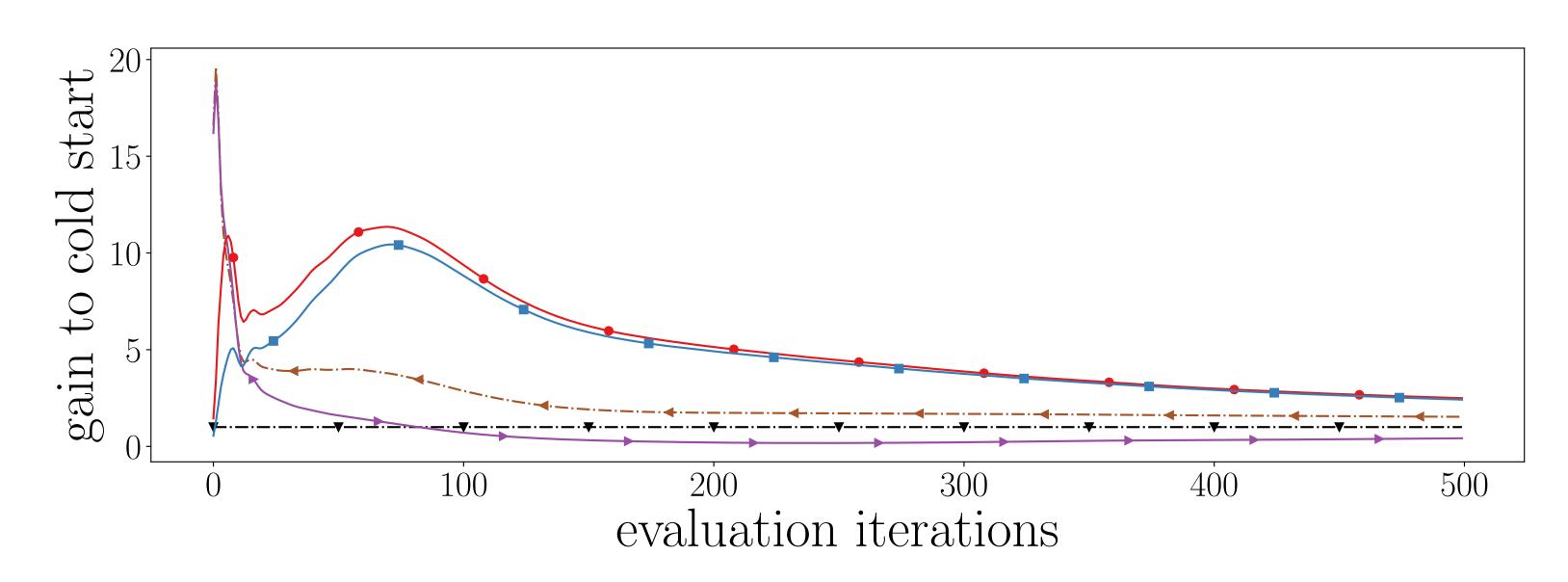
Semidefinite program

maximize
$$\mathbf{Tr}(AX)$$
 subject to $\mathbf{Tr}(X) = 1$ $\mathbf{1}^T |X| \mathbf{1} \le a$ $X \succ 0$

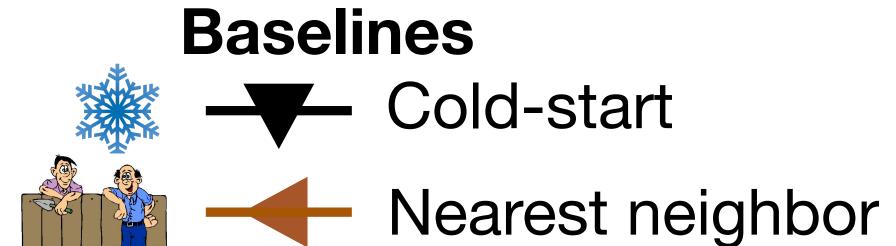
$$\longrightarrow$$
 X^{\star}

Sparse PCA results

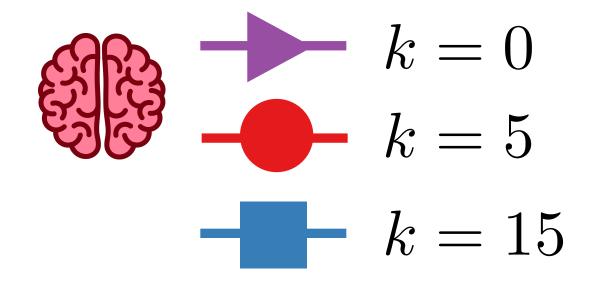




Different initializations

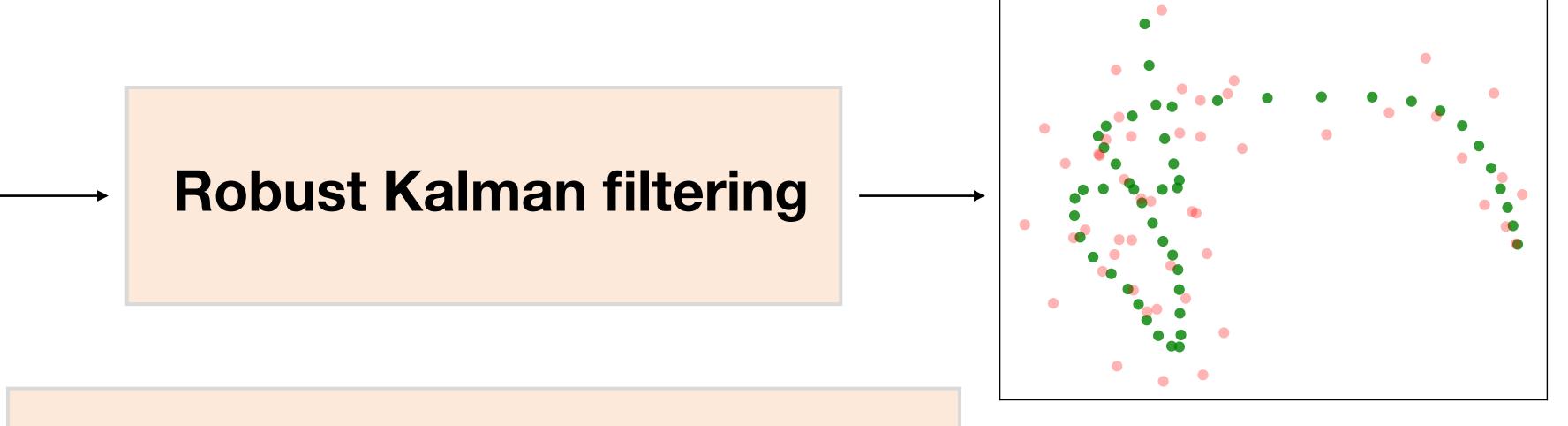


Learned



Picking k > 0 is essential to improve convergence

Robust Kalman filtering



$$\theta = \{y_t\}_{t=0}^{T-1}$$

Noisy trajectory

minimize
$$\sum_{t=0}^{T-1} \|w_t\|_2^2 + \mu \psi_\rho(v_t)$$
 subject to
$$x_{t+1} = Ax_t + Bw_t \quad \forall t$$

$$y_t = Cx_t + v_t \quad \forall t$$

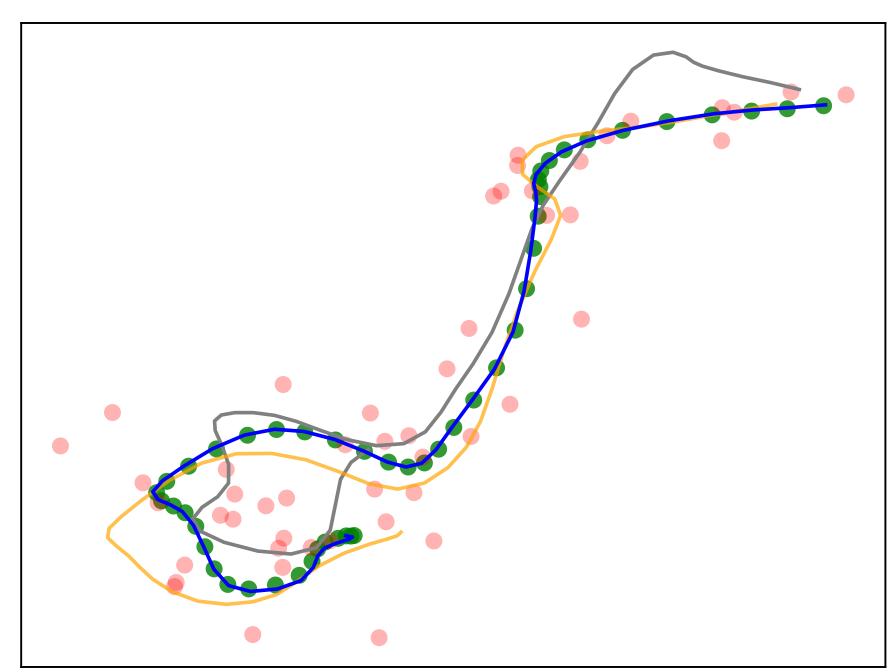
 $\longrightarrow \{x_t^{\star}, w_t^{\star}, v_t^{\star}\}_{t=0}^{T-1}$

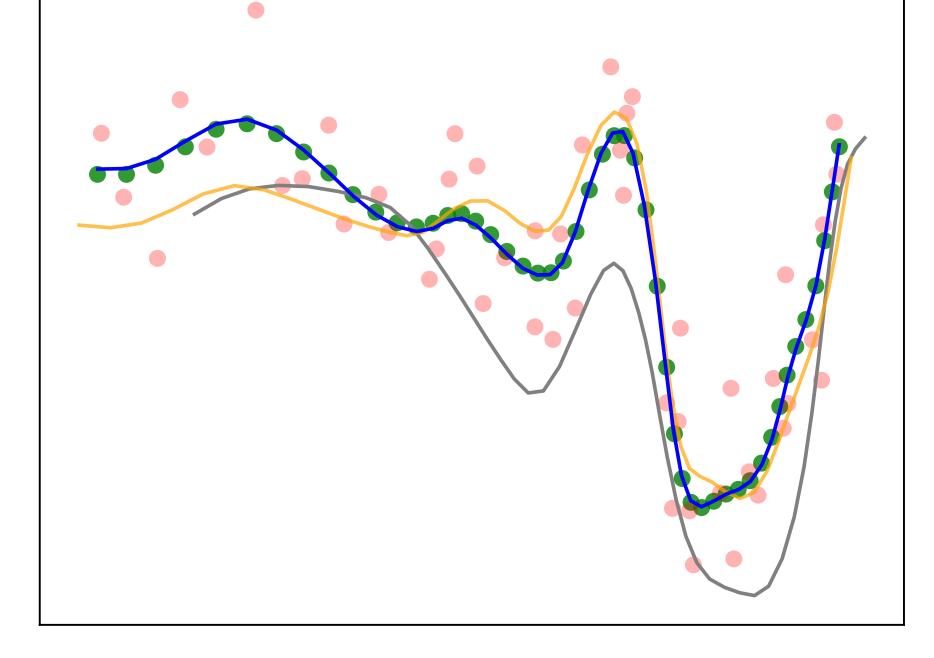
Recovered trajectory

Dynamics matrices: A, B

Observation matrix: C

Robust Kalman filtering visuals





Solution after 5 fixed-point steps with different initializations

With learning, we can estimate the state well

Model predictive control (MPC) of a quadcopter

Current state, previous control reference trajectory

Controller

Optimal controls

$$\theta = (x_{\text{init}}, u_{\text{prev}}, \\ \{x_t^{\text{ref}}\}_{t=1}^T)$$

Quadratic program

subject to
$$x_{t+1} = Ax_t + Bu_t$$

$$u_{\min} \leq u_{t} \leq u_{\min}$$

$$x_{\min} \leq x_{t} \leq x_{\max}$$

$$|u_{t+1} - u_t| \le \Delta u$$

$$x_0 = x_{\text{init}}$$

$$u_{-1} = u_{\text{prev}}$$

$$\longrightarrow \{x_t^{\star}, u_t^{\star}\}_{t=0}^T$$

Linearized dynamics

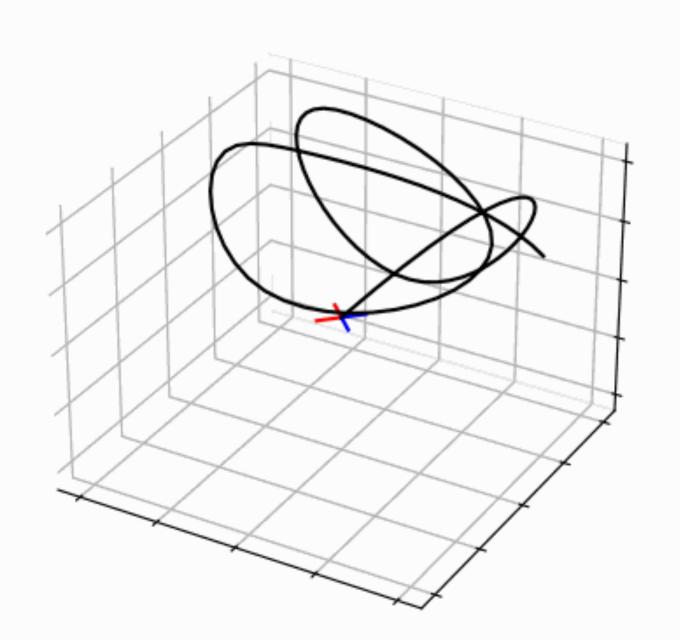
MPC of a quadcopter in a closed loop

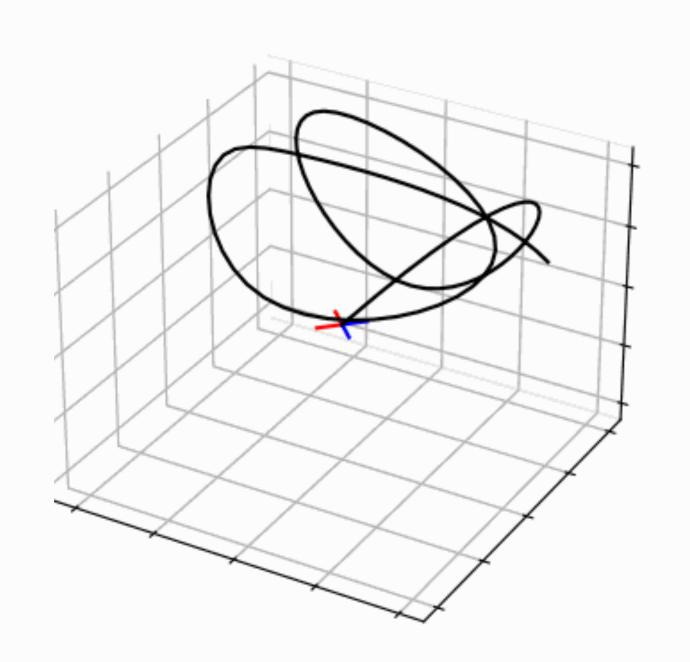
Budget of 15 fixed-point steps

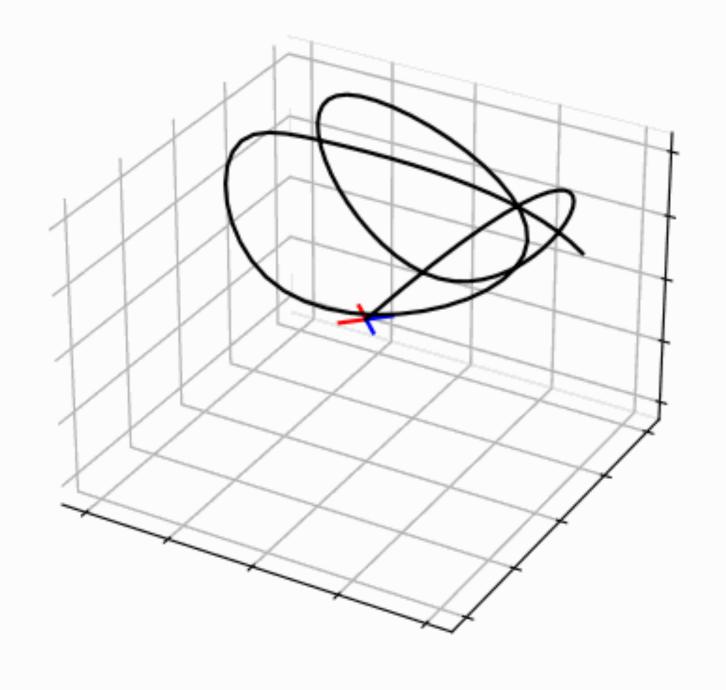
Nearest neighbor

Previous solution

Learned: k = 5







With learning, we can track the trajectory well

Image deblurring

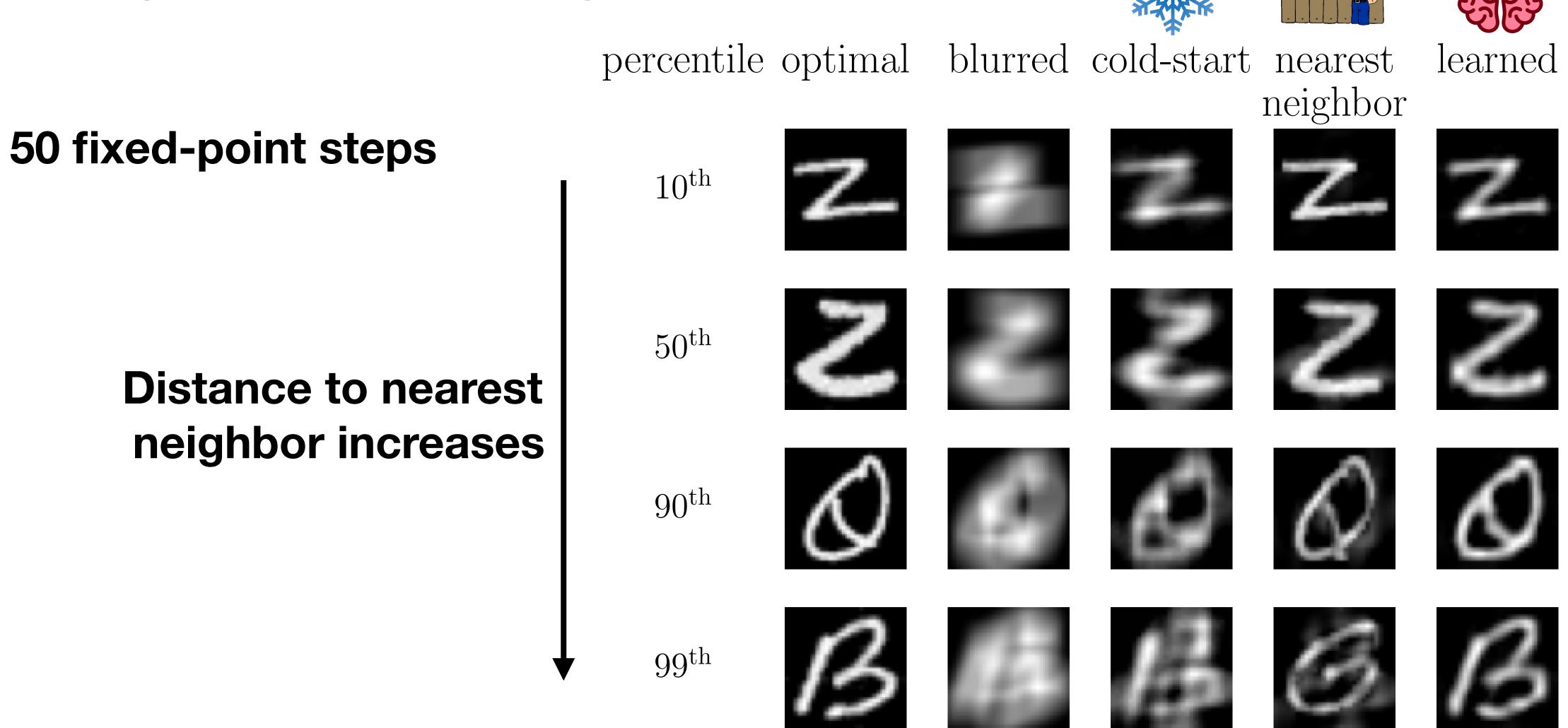
$$\theta = b$$
 \longrightarrow Blurred image

Quadratic program

minimize $||Ax - b||_2^2 + \lambda ||x||_1$ subject to $0 \le x \le 1$

The state of the s

Image deblurring



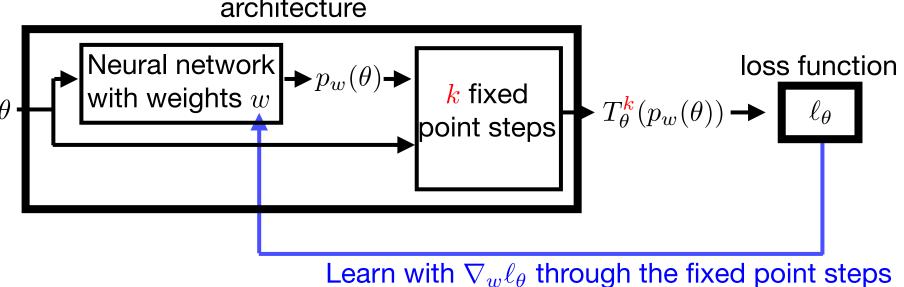
With learning, we can deblur all of the images quickly

Benefits of our learning framework

End-to-end learning: warm-start predictions

tailored to downstream algorithm

Guaranteed convergence



Can interface with state-of-the-art solvers

Generalization to

Future iterations Unseen data

Quadratic programs Conic programs

rajivs@princeton.edu

rajivsambharya.github.io

