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Tracking a reference trajectory with a quadcopter
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Challenge: we need faster methods to solve optimization problems

Robotics and control
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We sometimes need solutions in ~10 milliseconds or less




Claim: Real-world optimization is parametric
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Can machine learning speed up parametric optimization?

Often, we solve parametric optimization problems from the same family

Goal: Do mapping quickly and accurately
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Learning to Optimize



The learning to optimize paradigm

Goal: solve the parametric minimize  fo(2)
optimization problem fast subjectto gy(z) <0
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Learning to optimize is a growing research area

Inverse problems Convex optimization Integer programming
(Gregor and LaCun 2010) (Venkataraman and Amos 2021)

(Liu et. al 2018) (lchnowski et. al 2021)

(Wu et. al 2020) (Heaton et. al 2020)

(Jung et. al 2022)

Excellent tutorials
Learning to Optimize: A Primer and a Benchmark (Chen et. al 2021)
Tutorial on Amortized Optimization (Amos 2022)



Issues In learning to optimize (L20) methods

* |: Lack convergence guarantees
* |I: Lack generalization guarantees

e [lI: Incompatibility with state-of-the-art solvers

We need reliable L20 methods



L20 Challenge I: Convergence guarantees

Parameter 0 Parameter ¢
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L20 Challenge ll: Generalization guarantees

To unseen problems
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L20 Challenge lll: Incompatibility with state-of-the-art solvers

Existing state-of-the-art solvers are highly optimized

Written in low-level languages @
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When learning the algorithm steps, we cannot use these solvers
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Fixed-point optimization problems are ubiquitous

Parametric fixed-point problem: find z suchthat 2z =Ty(z)

Convex optimization

Problem Optimality conditions Fixed-point operator
minimize  fy(2) - (KKT conditions) '
subjectto gy(z) <0

Unconstrained, smooth convex optimization

Problem Optimality conditions Fixed-point operator

——— S

minimize fy(z) V fo(z) =0 Ty(z) =z — aV fy(z)
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Smooth, convex 15



Many optimization algorithms are fixed-point iterations
Fixed-point iterations: 2'"! = Tp(2*)

START S _
} ij Initialize with 2" (a warm-start)
| Terminate when fy(2") = ||Ty(z") — 2'[|> is small  Fixed point residual

FINISH

Example: Proximal gradient descent

minimize gy(2) + ho(2) @ Problem: limited iteration budget

Convex Convex
Smooth  Non-smooth

Ilterates ‘7! = prox,,, S aV g Zi)) Q Solution: learn the warm-start to

improve the solution within budget

1
prox.(v) = arg min <s(x) | 5 |x — UH%)

X

Operator T,(z) = prox,,, (z — aVgy(2))
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Some warm-starts are better than others

minimize  10z% + 23 Optimal solution at the origin
subjectto 2z >0

Run proximal gradient descent to solve

All three warm starts appear to be
equally suboptimal but converge
at very different rates

fixed-point residual
=

0 20 m

evaluation iterations
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Learning Framework
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End-to-end learning architecture

Learnable Optimizer

Loss
Parameter | _ Neural network @% _W,?m(zt)ai function
0 with weights w v k fixed T (pos (6)) —
_point steps 0 \Pu g

Learn with V ¢y through the fixed point steps
Loss function: /s(z) = ||z — |2

Learned warm start tailored for downstream algorithm o



Projection onto R, Step size

An example architecture
minimize  1/2z* Pz + 0%z l ((I / \ )

subjectto = > 0 Fixed-point operator: Tp(z) = I — aP)z — ab

Neural network @E@
b warm
1 start
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Convergence and Generalization
Bounds
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Guaranteed convergence independent of warm-start

Operator cases for 7

Linearly Averaged

convergent | \/

Contractive

Parameter 0

| earned solver with
convergence

Soluthn 2"

Convergence always guaranteed for learned warm starts
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Generalization bounds: train for k, evaluate for t

1

Flexibility: # of evaluation steps can differ from # of train steps

Number of 0

Train with & steps - Budget s steps
Loss: lp(2) = ||z — 2*(0)||, Goal: min fo(z) = | Th(z) — 2|2

Guarantees from k training steps to t evaluation steps

B-contractive case fo(1(z)) < 23" "Ly(Ty(2))
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Generalization bounds to unseen data

pg-contractive case
Theorem 1. With high probability over a training set of size N, for any 7,

B3 (T4 pul6) < 5 D o (T4 (u0) + 287+ 0 ( (t)\/@(w) ;lf(;g(TU

Risk
Empirical risk Penalty term

c1(t): worst-case fixed-point residual after ¢ steps

As N — oo, the penalty term decreases

As t — oo, the penalty term goes to zero

Derived from the PAC-Bayes framework
Non-contractive case: we provide similar bounds
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Learned warm-start can easily interface with solvers

Written in | @

Quadratic programs Conic programs
minimize  (1/2)z! Px +c'x minimize  (1/2)a" Px + ¢’z
subjectto ¢ < Az < u subjectto Az +s =10

s e C

sol = scs solver.solve(warm start=True,

sol = osgp_solver.warm_start(x=x0, y=y0) x=x0, y=y0, s=s0)

We code exact replicas of OSQP and SCS
Allows us to make timing comparisons for QPs and conic programs o5



Numerical Experiments
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We evaluate the gain over a cold-start

Baseline initializations
1. Cold-start: initialize at zero }%{

2. Nearest neighbor: initialize with solution of
nearest training problem

Metrics plotted
1. Fixed-point residual
2. Gain over the cold-start

£ (T2(0) __— Cold-start %
0

98N = Tt (pu(6))

" Learned warm-start %@‘9
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Sparse PCA

Covariance

matrix

§ = vec(A)

Sparse PCA

Semidefinite program

maximize Tr(AX)

subjectto Tr(X) =1
111X <c
X >0

Non-convex problem

maximize
subject to

1 Ax

Sparse
principal
component
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fixed-point residual

caln to cold start

Sparse PCA results Different initializations

Baselines

;%g.: —W§— Cold-start

ie] —€— Nearest neighbor
0-3

Learned
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0 100 200 300 400 500
evaluation iterations

Picking k > 0 is essential to improve convergence 59



Robust Kalman filtering

0= {y},—o
Noisy trajectory

Robust Kalman filtering

Second-order cone program

minimize 37, [[wel|3 + o (1)
SUbjeCt to Ti41 = ACCt + Bw, Vt
Yt — C.It -+ V¢ Vit

Dynamics matrices: A, B

Observation matrix: C

- Aat wl v

Recovered trajectory
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Robust Kalman filtering visuals

Solution after 5 fixed-point steps
with different initializations

Nearest neighbor |

B Previous solution  §
With learning, we can estimate the state well B | o5ned: 1 = 5 @E@

Noisy trajectory
B Optimal solution

R
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Model predictive control (MPC) of a quadcopter

Current state,
previous control - Controller
reference trajectory

Optimal
controls

Quadratic program
minimize >, (2, — 2T Q(w; — 21°")+

0 = (Zinit, Uprev; subjectto =z, = Ax; + Buy

{aiief};r:l) Umin < Ut < Umin

" {@a u:}sz

Linearized dynamics
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MPC of a quadcopter in a closed loop

Budget of 15 fixed-point steps

Nearest neighbor Previous solution Learned: k£ =5
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With learning, we can track the trajectory well



Image deblurring

0 =0
Blurred image

Image deblurring

Quadratic program

minimize  ||Ax — b||2 + \||z||s

subjectto 0<x <1

Z

*

X

Deblurred image
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Image deblurring

percentile optimal blurred cold-start nearest
neighbor
50 fixed-point steps N
10
50th
Distance to nearest
neighbor increases
90th
99th

With learning, we can deblur all of the images quickly

learned
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Benefits of our learning framework

architecture

Neural network » loss function

End-to-end learning: warm-start predictions o}l weane | R A | ST
tailored to downstream algorithm

Learn with V ¢y through the fixed point steps

Guaranteed convergence

SLS

SPLITTING CONIC SOLVER

¥

Generalization to

Future iterations
Unseen data

@ rajivs@princeton.edu

@ raj lIvsambh arya.g ithub.io https://arxiv.org/pdf/2309.07835.pdf E
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